biết \(\frac{a}{b}=\frac{2}{5},a< 0,ab=40\)
tính \(a-b\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ \(a+b+c=0\)\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
Ta có: \(B=\frac{ab}{a^2+b^2-c^2}+\frac{bc}{b^2+c^2-a^2}+\frac{ca}{c^2+a^2-b^2}\)
\(=\frac{ab}{a^2+\left(b-c\right)\left(b+c\right)}+\frac{bc}{b^2+\left(c-a\right)\left(c+a\right)}+\frac{ca}{c^2+\left(a-b\right)\left(a+b\right)}\)
\(=\frac{ab}{a^2-a\left(b-c\right)}+\frac{bc}{b^2-b\left(c-a\right)}+\frac{ca}{c^2-c\left(a-b\right)}\)
\(=\frac{ab}{a\left(a-b+c\right)}+\frac{bc}{b\left(b-c+a\right)}+\frac{ca}{c\left(c-a+b\right)}\)
\(=\frac{b}{a-b+c}+\frac{c}{b-c+a}+\frac{a}{c-a+b}\)
\(=\frac{b}{a+c-b}+\frac{c}{b+a-c}+\frac{a}{c+b-a}\)
\(=\frac{b}{-2b}+\frac{c}{-2c}+\frac{a}{-2a}=\left(-\frac{1}{2}\right)+\left(-\frac{1}{2}\right)+\left(-\frac{1}{2}\right)=-\frac{3}{2}\)
https://www.olm.vn/hoi-dap/detail/7715665734.html
bạn kham khảo tại link này nhé.
\(a+b+c=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}\left(a+b\right)^2=c^2\\\left(b+c\right)^2=a^2\\\left(c+a\right)^2=b^2\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}a^2+b^2-c^2=a^2+b^2-\left(a+b\right)^2=-2ab\\b^2+c^2-a^2=b^2+c^2-\left(b+c\right)^2=-2bc\\c^2+a^2-b^2=c^2+a^2-\left(c+a\right)^2=-2ca\end{cases}}\)
Vậy \(B=\frac{ab}{-2ab}+\frac{bc}{-2bc}+\frac{ca}{-2ca}=-\frac{1}{2}-\frac{1}{2}-\frac{1}{2}=-\frac{3}{2}\)
P/s: you tham khảo nha, mk ko biết đúng hay sai
Ta có: \(\frac{ab}{a^2+b^2-c^2}\)
\(=\frac{ab}{a^2+\left(b+c\right)\left(b-c\right)}\)
\(=\frac{ab}{a^2-a\left(b-c\right)}\)
\(=\frac{ab}{a\left(a-b+c\right)}\)
\(=\frac{ab}{-2ab}\)
\(=-\frac{1}{2}\)
Tương tự mà tính
a, Để (a+1)(a-2)<0
=>a+1,a-2 trái dấu
TH1: \(\hept{\begin{cases}a+1>0\\a-2< 0\end{cases}\Rightarrow\hept{\begin{cases}a>-1\\a< 2\end{cases}\Rightarrow}-1< a< 2}\)
TH2: \(\hept{\begin{cases}a+1< 0\\a-2>0\end{cases}\Rightarrow\hept{\begin{cases}a< -1\\a>2\end{cases}\left(loại\right)}}\)
Vậy -1<a<2
b, \(\frac{a}{b}=\frac{2}{5}\Rightarrow\frac{a}{2}=\frac{b}{5}\)
Đặt \(\frac{a}{2}=\frac{b}{5}=k\Rightarrow a=2k,b=5k\)
Ta có: ab=40
=>2k.5k=40
=>10k2=40
=>k2=4
=>k=\(\pm2\)
Với k=2 => a=4,b=10
Với k=-2 => a=-4,b=-10
Vậy...
\(\frac{a}{b}=\frac{3}{5}\Rightarrow\frac{a}{3}=\frac{b}{5}\Rightarrow\frac{a^2}{9}=\frac{b^2}{25}=\frac{a^2-b^2}{9-25}=\frac{-64}{-16}=4\)
\(\Rightarrow\frac{a^2}{9}=4\Rightarrow a^2=36\Rightarrow a=\pm6\)
\(\frac{b^2}{25}=4\Rightarrow b^2=100\Rightarrow b=\pm10\)
Vậy...
thôi ra rồi các bạn ạ
ko cần giải cho mình đâu, a-b=6