cho a,b,c khác nhau, cmr nếu:
\(\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ac}+\frac{a^2+b^2-c^2}{2ab}=1\)
thì hai phân thức có giá trị là 1 và một phân thức có giá trị -1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{b^2+c^2-a^2}{2bc}=A,\frac{c^2+a^2-b^2}{2ac}=B;\frac{a^2+b^2-c^2}{2ab}=C.\)
Theo giả thiết : \(A+B+C=1\)
Suy ra \(S=\left(A-1\right)+\left(B-1\right)+\left(C+1\right)=0\)
\(A-1=\frac{\left(b-c-a\right)\left(b-c+a\right)}{2bc};\)
\(B-1=\frac{\left(a-c-b\right)\left(a-c+b\right)}{2ac};\)
\(C+1=\frac{\left(a+b+c\right)\left(a+b-c\right)}{2ab}\)
\(S=\frac{a+b-c}{2abc}\left[c\left(a+b+c\right)+b\left(a-c-b\right)+a\left(b-c-a\right)\right]\)
\(S=0\Rightarrow\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)=0\)
Có 3 khả năng xảy ra :
TH1 : \(a+b-c=0\Rightarrow A-1=B-1=C+1=0\left(đpcm\right)\)
TH2 :
\(b+c-a=0\).Ta xét : \(A+1=B-1=C-1=0\left(đpcm\right)\)
TH3:
\(c+a-b=0\). Ta xét : \(S=\left(A-1\right)+\left(B+1\right)+\left(C-1\right)=0\)
và \(\Rightarrow A-1=B+1=C-1=0\left(đpcm\right)\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(\Leftrightarrow\frac{bc+ca+ab}{abc}=0\)
\(\Leftrightarrow bc+ca+ab=0\)
\(\Leftrightarrow\hept{\begin{cases}bc=-ab-ca\\ca=-ab-bc\\ab=-ca-bc\end{cases}}\)
Ta có : \(A=\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\)
\(\Leftrightarrow A=\frac{a^2}{a^2+bc-ab-ca}+\frac{b^2}{b^2+ac-ab-bc}+\frac{c^2}{c^2+ab-ca-bc}\)
\(\Leftrightarrow A=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-a\right)\left(b-c\right)}+\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)
\(\Leftrightarrow A=\frac{a^2}{\left(a-b\right)\left(a-c\right)}-\frac{b^2}{\left(b-c\right)\left(a-b\right)}+\frac{c^2}{\left(a-c\right)\left(b-c\right)}\)
\(\Leftrightarrow A=\frac{a^2\left(b-c\right)-b^2\left(a-c\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(\Leftrightarrow A=\frac{a^2\left(b-c\right)-b^2\left[\left(b-c\right)+\left(a-b\right)\right]+c^2\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(\Leftrightarrow A=\frac{a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(\Leftrightarrow A=\frac{\left(a^2-b^2\right)\left(b-c\right)-\left(b^2-c^2\right)\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(\Leftrightarrow A=\frac{\left(a+b\right)\left(a-b\right)\left(b-c\right)-\left(b+c\right)\left(b-c\right)\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(\Leftrightarrow A=\frac{\left(a-b\right)\left(b-c\right)\left[\left(a+b\right)-\left(b+c\right)\right]}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(\Leftrightarrow A=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=1\)
cố tử thần ♡๖ۣۜŦεαм♡❤Ɠ长♡ღ
Chị ơi dùng bđt BCS , dấu = xảy ra P =1 như thế có gọi là giá trị của P=1 không nhỉ ?
\(ĐK:a,b,c\ne0\)
Ta có: \(\frac{b^2+c^2-a^2}{2bc}+\frac{c^2+a^2-b^2}{2ca}+\frac{a^2+b^2-c^2}{2ab}=1\)\(\Leftrightarrow\left(\frac{b^2+c^2-a^2}{2bc}+1\right)+\left(\frac{c^2+a^2-b^2}{2ca}-1\right)+\left(\frac{a^2+b^2-c^2}{2ab}-1\right)=0\)\(\Leftrightarrow\frac{\left(b+c\right)^2-a^2}{2bc}+\frac{\left(c-a\right)^2-b^2}{2ca}+\frac{\left(a-b\right)^2-c^2}{2ab}=0\)\(\Leftrightarrow\frac{\left(b+c-a\right)\left(b+c+a\right)}{2bc}+\frac{\left(c-a-b\right)\left(b+c-a\right)}{2ca}-\frac{\left(a-b+c\right)\left(b+c-a\right)}{2ab}=0\)\(\Leftrightarrow\left(b+c-a\right)\frac{a\left(a+b+c\right)+b\left(c-a-b\right)-c\left(a-b+c\right)}{2abc}=0\)\(\Leftrightarrow\frac{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}{2abc}=0\)
Trường hợp 1: \(b+c-a=0\)thì
+) \(\frac{\left(b+c\right)^2-a^2}{2bc}=\frac{\left(b+c-a\right)\left(a+b+c\right)}{2bc}=0\Rightarrow\frac{b^2+c^2-a^2}{2bc}=-1\)
+) \(\frac{\left(a-b\right)^2-c^2}{2ab}=\frac{\left(a-b-c\right)\left(a+c-b\right)}{2ab}=0\Rightarrow\frac{a^2+b^2-c^2}{2ab}=1\)
\(\Rightarrow\frac{c^2+a^2-b^2}{2ca}=1\)
Điều này chứng tỏ có hai phân thức có giá trị là 1 và một phân thức có giá trị -1
Trường hợp 2: \(c+a-b=0\) thì
+) \(\frac{\left(a-b\right)^2-c^2}{2ab}=\frac{\left(a-b-c\right)\left(a+c-b\right)}{2ab}=0\Rightarrow\frac{a^2+b^2-c^2}{2ab}=1\)
+) \(\frac{\left(c+a\right)^2-b^2}{2ca}=\frac{\left(c+a-b\right)\left(c+a+b\right)}{2ca}=0\Rightarrow\frac{c^2+a^2-b^2}{2ca}=-1\)
\(\Rightarrow\frac{b^2+c^2-a^2}{2bc}=1\)
Điều này cũng chứng tỏ có hai phân thức có giá trị là 1 và một phân thức có giá trị -1
Trường hợp 3: \(a+b-c=0\)
+) \(\frac{\left(c-a\right)^2-b^2}{2ca}=\frac{\left(c-a-b\right)\left(c-a+b\right)}{2ca}=0\Rightarrow\frac{c^2+a^2-b^2}{2ca}=1\)
+) \(\frac{\left(a+b\right)^2-c^2}{2ab}=\frac{\left(a+b-c\right)\left(a+b+c\right)}{2ab}=0\Rightarrow\frac{a^2+b^2-c^2}{2ab}=-1\)
\(\Rightarrow\frac{b^2+c^2-a^2}{2bc}=1\)
Điều này cũng chứng tỏ có hai phân thức có giá trị là 1 và một phân thức có giá trị -1 (đpcm)
cho mình hỏi tại sao từ
\(\left(b+c-a\right)\cdot\frac{a\left(a+b+c\right)+b\left(c-a-b\right)-c\left(a-b+c\right)}{2abc}=0\)
lại có thể suy ra được
\(\frac{\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)}{2abc}=0\) vậy ?