giải pt
\(\dfrac{x-1}{x+1}-\dfrac{x^2+x-2}{x+1}=\dfrac{x+1}{x-1}-x-2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`1/(3-x)-1/(x+1)=x/(x-3)-(x-1)^2/(x^2-2x-3)(x ne -1,3)`
`<=>(-x-1)/(x^2-2x-3)-(x-3)/(x^2-2x-3)=(x^2+x)/(x^2-2x-3)-(x-1)^2/(x^2-2x-3)`
`<=>-x-1-x+3=x^2+x-x^2+2x-1`
`<=>-2x+2=3x-1`
`<=>5x=3`
`<=>x=3/5`
Vậy `S={3/5}`
`1/(x-2)-6/(x+3)=6/(6-x^2-x)(x ne 2,-3)`
`<=>(x+3)/(x^2+x-6)-(6x-12)/(x^2+x-6)+6/(x^2+x-6)=0`
`<=>x+3-6x+12+6=0`
`<=>-5x+21=0`
`<=>x=21/5`
Vậy `S={21/5}`
a) ĐKXĐ: \(x\notin\left\{3;-1\right\}\)
Ta có: \(\dfrac{1}{3-x}-\dfrac{1}{x+1}=\dfrac{x}{x-3}-\dfrac{\left(x-1\right)^2}{x^2-2x-3}\)
\(\Leftrightarrow\dfrac{-1\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}-\dfrac{x-3}{\left(x+1\right)\left(x-3\right)}=\dfrac{x\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}-\dfrac{x^2-2x+1}{\left(x-3\right)\left(x+1\right)}\)
Suy ra: \(-x-1-x+3=x^2+x-x^2+2x-1\)
\(\Leftrightarrow3x-1=-2x+2\)
\(\Leftrightarrow3x+2x=2+1\)
\(\Leftrightarrow5x=3\)
hay \(x=\dfrac{3}{5}\)(nhận)
Vậy: \(S=\left\{\dfrac{3}{5}\right\}\)
1: Sửa đề: 2/x+2
\(\dfrac{2x+1}{x^2-4}+\dfrac{2}{x+2}=\dfrac{3}{2-x}\)
=>\(\dfrac{2x+1+2x-4}{x^2-4}=\dfrac{-3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
=>4x-3=-3x-6
=>7x=-3
=>x=-3/7(nhận)
2: \(\Leftrightarrow\dfrac{\left(3x+1\right)\left(3-x\right)+\left(3+x\right)\left(1-3x\right)}{\left(1-3x\right)\left(3-x\right)}=2\)
=>9x-3x^2+3-x+3-9x+x-3x^2=2(3x-1)(x-3)
=>-6x^2+6=2(3x^2-10x+3)
=>-6x^2+6=6x^2-20x+6
=>-12x^2+20x=0
=>-4x(3x-5)=0
=>x=5/3(nhận) hoặc x=0(nhận)
3: \(\Leftrightarrow x\cdot\dfrac{8}{3}-\dfrac{2}{3}=1+\dfrac{5}{4}-\dfrac{1}{2}x\)
=>x*19/6=35/12
=>x=35/38
a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Ta có: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-4}{\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(x^2+3x+2-5x+10=12+x^2-4\)
\(\Leftrightarrow x^2-2x+12-8-x^2=0\)
\(\Leftrightarrow-2x+4=0\)
\(\Leftrightarrow-2x=-4\)
hay x=2(loại)
Vậy: \(S=\varnothing\)
b) Ta có: \(\left|2x+6\right|-x=3\)
\(\Leftrightarrow\left|2x+6\right|=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+6=x+3\left(x\ge-3\right)\\-2x-6=x+3\left(x< -3\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-x=3-6\\-2x-x=3+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=-3\left(loại\right)\end{matrix}\right.\)
Vậy: S={-3}
ĐKXĐ: \(x\ne\pm1\)
\(\dfrac{x+1}{X-1}-\dfrac{x-1}{X+1}=\dfrac{4}{x^2-1}\)
\(\Leftrightarrow\dfrac{\left(x+1\right)^2}{x^2-1}-\dfrac{\left(x-1\right)^2}{x^2-1}=\dfrac{4}{x^2-1}\)
\(\Leftrightarrow\left(x+1\right)^2-\left(x-1\right)^2=4\)
\(\Leftrightarrow x^2+2x+1-x^2+2x-1=4\)
\(\Leftrightarrow4x=4\)
\(\Leftrightarrow x=1\)(loại)
Vậy phương trình vô nghiệm
ĐKXĐ: \(x\ne\left\{-3;-2;-1;0\right\}\)
\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}=\dfrac{x}{x\left(x+3\right)}\)
\(\Leftrightarrow\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}=\dfrac{x}{x\left(x+3\right)}\)
\(\Leftrightarrow\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{x}{x\left(x+3\right)}\)
\(\Leftrightarrow\dfrac{3}{x\left(x+3\right)}=\dfrac{x}{x\left(x+3\right)}\)
\(\Leftrightarrow x=3\)
`20((x-2)/(x+1))^2-5((x+2)/(x-1))^2+48(x^2-4)/(x^2-1)=0(x ne +-1)`
Đặt `(x-2)/(x+1)=a,(x+2)/(x-1)=b`
`pt<=>20a^2-5b^2+48ab=0`
`<=>20a^2+48ab-5b^2=0`
`<=>20a^2-2ab+50ab-5b^2=0`
`<=>2a(a-10b)+5b(10a-b)=0`
`<=>(a-10b)(2a+5b)=0`
Đến đây dễ rồi bạn tự giải tiếp.
ĐKXĐ: x \(\ne\)\(\pm\)1
Ta có: \(20\left(\dfrac{x-2}{x+1}\right)^2-5\left(\dfrac{x+2}{x-1}\right)^2+48\cdot\dfrac{x^2-4}{x^2-1}=0\)
Đặt: \(\dfrac{x-2}{x+1}=a\) ; \(\dfrac{x+2}{x-1}=b\)
=> ab = \(\dfrac{x^2-4}{x^2-1}\)
Do đó, ta có pt mới: 20a2 - 5b2 + 48ab = 0
<=> 20a2 + 50ab - 2ab - 5b2 = 0
<=> (10a - b)(2a + 5b) = 0
<=> \(\left[{}\begin{matrix}10a=b\\2a=-5b\end{matrix}\right.\)
TH1: 10a = b => \(10\cdot\dfrac{x-2}{x+1}=\dfrac{x+2}{x-1}\)
<=> 10(x - 2)(x - 1) = (x + 2)(x + 1)
<=> 10x2 - 30x + 20 = x2 + 3x + 2
<=> 9x2 - 33x + 18 = 0
<=> 9x2 - 27x - 6x + 18 = 0
<=> (9x - 6)(x - 3) = 0
<=> \(\left[{}\begin{matrix}x=3\\x=\dfrac{2}{3}\end{matrix}\right.\)(tm)
TH2: \(2a=-5b\)=> \(2\cdot\dfrac{x-2}{x+1}=-5\cdot\dfrac{x+2}{x-1}\)
=> (2x - 4)(x - 1) = (-5x - 10)(x + 1)
<=> 2x2 - 6x + 4 = -5x2 - 15x - 10
<=> 7x2 + 9x + 14 = 0
=> pt vn
mình nhầm mẫu nhé :v mình làm lại
\(=\left(\dfrac{x-\sqrt{x}-2x+4\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)^2}\right):\dfrac{2-\sqrt{x}}{x-1}\)
\(=\dfrac{-x+3\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\sqrt{x}+1}{2-\sqrt{x}}=\dfrac{\left(2-\sqrt{x}\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(2-\sqrt{x}\right)\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(\dfrac{x+1}{x^2+x+1}-\dfrac{x-1}{x^2-x+1}=\dfrac{2\left(x+2\right)^2}{x^6-1}\)
\(\Leftrightarrow\dfrac{x+1}{x^2+x+1}-\dfrac{x-1}{x^2-x+1}=\dfrac{2\left(x+2\right)^2}{\left(x^2-1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)}\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)}{\left(x^2+x+1\right)\left(x^2-x+1\right)}=\dfrac{2\left(x+2\right)^2}{\left(x^2-1\right)\left(x^2+x+1\right)\cdot\left(x^2-x+2\right)}\)
\(\Leftrightarrow\dfrac{x^3+1-x^3+1}{\left(x^2+x+1\right)\left(x^2-x+1\right)}=\dfrac{2\left(x+2\right)^2}{\left(x^2-1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)}\)
\(\Leftrightarrow2\left(x^2-1\right)=2\left(x^2+4x+4\right)\)
\(\Leftrightarrow2x^2+8x+8-2x^2+2=0\)
=>8x+10=0
hay x=-5/4
ĐKXĐ : \(x\ne\pm1\)
PT : \(\Leftrightarrow\dfrac{x-1-x^2-x+2}{x+1}=\dfrac{x+1-\left(x+2\right)\left(x-1\right)}{x-1}\)
\(\Leftrightarrow\dfrac{1-x^2}{x+1}=1-x=\dfrac{3-x^2}{x-1}\)
\(\Leftrightarrow x^2-3=\left(x-1\right)^2=x^2-2x+1\)
\(\Leftrightarrow-2x=-4\)
\(\Leftrightarrow x=2\left(TM\right)\)
Vậy ...
ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
Ta có: \(\dfrac{x-1}{x+1}-\dfrac{x^2+x-2}{x+1}=\dfrac{x+1}{x-1}-x-2\)
\(\Leftrightarrow\dfrac{x-1-x^2-x+2}{x+1}-\dfrac{x+1}{x-1}+x+2=0\)
\(\Leftrightarrow\dfrac{-x^2+1}{x+1}-\dfrac{x+1}{x-1}+x+2=0\)
\(\Leftrightarrow\dfrac{-\left(x^2-1\right)}{x+1}-\dfrac{x+1}{x-1}+x+2=0\)
\(\Leftrightarrow\dfrac{-\left(x-1\right)\left(x+1\right)}{x+1}-\dfrac{x+1}{x-1}+x+2=0\)
\(\Leftrightarrow-\left(x-1\right)-\dfrac{x+1}{x-1}+x+2=0\)
\(\Leftrightarrow\dfrac{-\left(x-1\right)^2}{x-1}-\dfrac{x+1}{x-1}+\dfrac{\left(x+2\right)\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}=0\)
Suy ra: \(-\left(x^2-2x+1\right)-x-1+x^2-x+2x-2=0\)
\(\Leftrightarrow-x^2+2x-1-x-1+x^2+x-2=0\)
\(\Leftrightarrow2x-4=0\)
\(\Leftrightarrow2x=4\)
hay x=2(nhận)
Vậy: S={2}