gioi han cua day so
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta sẽ sd phép quy nạp một chút, tui nhớ cái dãy trong căn có trong SGK nên CM lại thôi :b
\(1^3+2^3+...+n^3=\left[\dfrac{n\left(n+1\right)}{2}\right]^2\)
Với n=1, mệnh đề có dạng \(1=\left[\dfrac{1\left(1+1\right)}{2}\right]^3\)
=>Mệnh đề đúng với n=1
Giả sử n=k đúng với \(\forall k\ge1\) , nghĩa là:
\(1^3+2^3+..+k^3=\left[\dfrac{k\left(k+1\right)}{2}\right]^2\)
Ta cần chứng mình mệnh đề cũng đúng với n=k+1, nghĩa là:
\(1^3+2^3+...+k^3+\left(k+1\right)^3=\left[\dfrac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)
Thật vậy
\(1^3+2^3+...+k^3+\left(k+1\right)^3=\left[\dfrac{k\left(k+1\right)}{2}\right]^2+\left(k+1\right)^3=\dfrac{k^2\left(k+1\right)^2+4\left(k+1\right)^3}{4}=\dfrac{\left(k+1\right)^2\left(k^2+4k+4\right)}{4}=\left[\dfrac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)
Vậy mệnh đề giả thiết đúng
\(lim\dfrac{\left(n+1\right).n\left(n+1\right)}{2.(3n^3+n+2)}=lim\dfrac{n^3}{6n^3}=\dfrac{1}{6}\)
Ta có đẳng thức: \(1^3+2^3+...+n^3=\left(\dfrac{n\left(n+1\right)}{2}\right)^2\)
\(\Rightarrow\lim\left(u_n\right)=\lim\dfrac{\left(n+1\right).n\left(n+1\right)}{2\left(3n^3+n+2\right)}=\dfrac{\left(1+\dfrac{1}{n}\right).1.\left(1+\dfrac{1}{n}\right)}{2\left(3+\dfrac{1}{n^2}+\dfrac{2}{n^3}\right)}=\dfrac{1.1.1}{6}=\dfrac{1}{6}\)
refer
Vị trí và giới hạn lãnh thổ- Là khoảng không gian bao trùm lên lãnh thổ nước ta. - Trên đất liền được xác định bằng các đường biên giới, trên biển là ranh giới bên ngoài của lãnh hải và không gian của các đảo. - Vị trí nội chí tuyến. - Vị trí gần trung tâm khu vực Đông Nam Á.
- Là khoảng không gian bao trùm lên lãnh thổ nước ta.
- Trên đất liền được xác định bằng các đường biên giới, trên biển là ranh giới bên ngoài của lãnh hải và không gian của các đảo. - Vị trí nội chí tuyến. - Vị trí gần trung tâm khu vực Đông Nam Á.
Chọn ý D nhé bạn
Chọn D nhé !