K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: 

a) Ta có: 7x+21=0

\(\Leftrightarrow7x=-21\)

hay x=-3

Vậy: S={-3}

b) Ta có: 3x-2=2x-3

\(\Leftrightarrow3x-2-2x+3=0\)

\(\Leftrightarrow x+1=0\)

hay x=-1

Vậy: S={-1}

c) Ta có: 5x-2x-24=0

\(\Leftrightarrow3x=24\)

hay x=8

Vậy: S={8}

Câu 2: 

a) Ta có: \(\left(2x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-1\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=1\end{matrix}\right.\)

Vậy: \(S=\left\{-\dfrac{1}{2};1\right\}\)

b) Ta có: \(\left(2x-3\right)\left(-x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\-x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\-x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=7\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{3}{2};7\right\}\)

c) Ta có: \(\left(x+3\right)^3-9\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left[\left(x+3\right)^2-9\right]=0\)

\(\Leftrightarrow\left(x+3\right)\left(x+3-3\right)\left(x+3+3\right)=0\)

\(\Leftrightarrow x\left(x+3\right)\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=-6\end{matrix}\right.\)

Vậy: S={0;-3;-6}

21 tháng 3 2023

a)\(\left(5x+2\right)\left(2x-6\right)=0\\ \left\{{}\begin{matrix}5x+2=0\Leftrightarrow5x=-2\Leftrightarrow x=\dfrac{-2}{5}\\2x-6=0\Leftrightarrow2x=6\Leftrightarrow x=\dfrac{6}{2}=3\end{matrix}\right.\)

b)\(\dfrac{5x}{2x+2}+1=\dfrac{8}{x+1}\\ \Leftrightarrow\dfrac{5x}{2\left(x+1\right)}+1=\dfrac{8}{x+1}\\ \Leftrightarrow\dfrac{5x+2\left(x+1\right)}{2\left(x+1\right)}=\dfrac{2\cdot8}{2\left(x+1\right)}\\ \Leftrightarrow5x+2\left(x+1\right)=16\\ \Leftrightarrow5x+2x+2=16\\ \Leftrightarrow5x+2x=16-2\\ \Leftrightarrow7x=14\\ \Leftrightarrow x=\dfrac{14}{7}=2\)

21 tháng 3 2023

a, <=>5x+2=0<=>x=-2/5
    <=>2x-6=0<=>x=6/2=3
mik có tí việc ko lm hết cho bn đc xl

 

loading...  loading...  loading...  

3:

a: u+v=14 và uv=40

=>u,v là nghiệm của pt là x^2-14x+40=0

=>x=4 hoặc x=10

=>(u,v)=(4;10) hoặc (u,v)=(10;4)

b: u+v=-7 và uv=12

=>u,v là các nghiệm của pt:

x^2+7x+12=0

=>x=-3 hoặc x=-4

=>(u,v)=(-3;-4) hoặc (u,v)=(-4;-3)

c; u+v=-5 và uv=-24

=>u,v  là các nghiệm của phương trình:

x^2+5x-24=0

=>x=-8 hoặc x=3

=>(u,v)=(-8;3) hoặc (u,v)=(3;-8)

AH
Akai Haruma
Giáo viên
12 tháng 5 2021

Lời giải:
a) $|4x^2-25|=0$

$\Leftrightarrow 4x^2-25=0$

$\Leftrightarrow (2x-5)(2x+5)=0$

$\Rightarrow x=\pm \frac{5}{2}$

b) 

$|x-2|=3$

\(\Rightarrow \left[\begin{matrix} x-2=-3\\ x-2=3\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-1\\ x=5\end{matrix}\right.\)

c) 

\(|x-3|=2x-1\Rightarrow \left\{\begin{matrix} 2x-1\geq 0\\ \left[\begin{matrix} x-3=2x-1\\ x-3=1-2x\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ \left[\begin{matrix} x=-2\\ x=\frac{4}{3}\end{matrix}\right.\end{matrix}\right.\Rightarrow x=\frac{4}{3}\)

d) 

$|x-5|=|3x-2|$

\(\Rightarrow \left[\begin{matrix} x-5=3x-2\\ x-5=2-3x\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{-3}{2}\\ x=\frac{7}{4}\end{matrix}\right.\)

a: =>3x^2-3x-2x+2=0

=>(x-1)(3x-2)=0

=>x=2/3 hoặc x=1

b: =>2x^2=11

=>x^2=11/2

=>\(x=\pm\dfrac{\sqrt{22}}{2}\)

c: Δ=5^2-4*1*7=25-28=-3<0

=>PTVN

f: =>6x^4-6x^2-x^2+1=0

=>(x^2-1)(6x^2-1)=0

=>x^2=1 hoặc x^2=1/6

=>\(\left[{}\begin{matrix}x=\pm1\\x=\pm\dfrac{\sqrt{6}}{6}\end{matrix}\right.\)

d: =>(5-2x)(5+2x)=0

=>x=5/2 hoặc x=-5/2

e: =>4x^2+4x+1=x^2-x+9 và x>=-1/2

=>3x^2+5x-8=0 và x>=-1/2

=>3x^2+8x-3x-8=0 và x>=-1/2

=>(3x+8)(x-1)=0 và x>=-1/2

=>x=1

20 tháng 3 2022

a) x(4x + 2) = 4x2 - 14

⇔ 4x2 + 2x = 4x2 - 14

⇔ 4x2 - 4x2 + 2x = -14

⇔ 2x = -14

⇔ x = -7

Vậy tập nghiệm S = ......

b) (x2 - 9)(2x - 1) = 0

⇔ x2 - 9 = 0 hoặc 2x - 1 = 0

⇔ x2 = 9 hoặc 2x = 1

⇔ x = 3 hoặc -3 hoặc x = \(\dfrac{1}{2}\)

Vậy .......

c) \(\dfrac{3}{x-2}\) + \(\dfrac{4}{x+2}\) = \(\dfrac{x-12}{x^2-4}\) 

⇔ \(\dfrac{3}{x-2}\) + \(\dfrac{4}{x+2}\) = \(\dfrac{x-12}{\left(x-2\right)\left(x+2\right)}\)

ĐKXĐ: x - 2 ≠ 0 và x + 2 ≠ 0

       ⇔ x ≠ 2 và x ≠ -2MSC (mẫu số chung): (x - 2)(x + 2)Quy đồng mẫu hai vế và khử mẫu ta được:3x + 6 + 4x - 8 = x - 12⇔ 3x + 4x - x = 8 - 6 - 12⇔ 6x = -10⇔ x = \(-\dfrac{5}{3}\) (nhận)Vậy ........
28 tháng 1 2023

`a)(2x-1)^2-0,25=0`

`<=>(2x-1-0,5)(2x-1+0,5)=0`

`<=>(2x-1,5)(2x-0,5)=0`

`<=>[(x=0,75)(x=0,25):}`

`b)x^2+9=6x`

`<=>(x-3)^2=0`

`<=>x-3=0`

`<=>x=3`

`c)(x^2-4)-3x-6=0`

`<=>(x-2)(x+2)-3(x+2)=0`

`<=>(x+2)(x-2-3)=0`

`<=>(x+2)(x-5)=0`

`<=>[(x=-2),(x=5):}`

a: =>(2x-1-0,5)(2x-1+0,5)=0

=>(2x-1,5)(2x-0,5)=0

=>x=0,25 hoặc x=0,75

b: =>x^2-6x+9=0

=>(x-3)^2=0

=>x-3=0

=>x=3

c: =>(x-2)(x+2)-3(x+2)=0

=>(x+2)(x-5)=0

=>x=5 hoặc x=-2

14 tháng 3 2023

Bạn nên dùng công thức trực quan cho bài toán như thế này nhé.

15 tháng 2 2021

2 tiếng rồi chưa bạn nào làm à :v để "Top 4 Battle City" :))

( x + 1 )2( 3x + 2 )( 3x + 4 ) - 8 = 0

<=> ( x2 + 2x + 1 )( 9x2 + 18x + 8 ) - 8 = 0

Đặt x2 + 2x + 1 = y

pt <=> y( 9y - 1 ) - 8 = 0

<=> 9y2 - y - 8 = 0

<=> ( y - 1 )( 9y + 8 ) = 0

<=> ( x2 + 2x + 1 - 1 )[ 9( x2 + 2x + 1 ) + 8 ] = 0

<=> x( x + 2 )[ 9( x + 1 )2 + 8 ] = 0

Vì 9( x + 1 )2 + 8 ≥ 8 > 0 ∀ x

=> x( x + 2 ) = 0

<=> x = 0 hoặc x = -2

Vậy tập nghiệm của phương trình là S = { 0 ; -2 }

15 tháng 2 2021

Thanks bạn nhiều nhá!