K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2021

\(\left(2x+5\right)^2=\left(x+3\right)^2\)

\(\Leftrightarrow\left(2x+5\right)^2-\left(x+3\right)^2=0\)

\(\Leftrightarrow\left(2x+5-x-3\right).\left(2x+5+x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right).\left(3x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\3x+8=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\3x=-8\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x=\frac{-8}{3}\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-3;\frac{-8}{3}\right\}\)

\(\left(x^4-16\right).\left(x^3-1\right).\left(x+3\right)=0\)

\(\Leftrightarrow x^4-16=0\)hoặc \(x^3-1=0\)hoặc \(x+3=0\)

\(\Leftrightarrow x=2\)hoặc \(x=1\)hoặc \(x=-3\)

Vậy tập nghiêm của phương trình là \(S=\left\{2;1;-3\right\}\)

4 tháng 2 2021

\(\left(2x+5\right)^2=\left(x+3\right)^2\)

\(\Leftrightarrow\left(2x+5\right)^2-\left(x+3\right)^2=0\)

\(\Leftrightarrow\left(2x+5-x-3\right)\left(2x+5+x+3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(3x+8\right)=0\Leftrightarrow x=-2orx=-\frac{8}{3}\)

Vậy tập nghiệm của phương trình là S = { -2 ; -8/3 } 

\(\left(x^4-16\right)\left(x^3-1\right)\left(x+3\right)=0\)

TH1 : \(\left(x^4-16\right)=0\Leftrightarrow\left[\left(x^2\right)^2-4^2\right]=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2+4\right)\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2+4\ne0\right)=0\Leftrightarrow x=\pm2\)

\(x^2+4=0\Rightarrow x^2=-4\)mà \(x^2\ge0\forall x;-4< 0\)

TH2 : \(x^3-1=0\Leftrightarrow\left(x-1\right)\left(x^2+x+1\ne0\right)=0\Leftrightarrow x=1\)

TH3 : \(x+3=0\Leftrightarrow x=-3\)

Vậy tập nghiệm của phương trình là S = { 2 ; -2 ; 1 ; -3 }

a) Ta có: \(\left(x-3\right)=\left(3-x\right)^2\)

\(\Leftrightarrow\left(x-3\right)^2-\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)

b) Ta có: \(x^3+\dfrac{3}{2}x^2+\dfrac{3}{4}x+\dfrac{1}{8}=\dfrac{1}{64}\)

\(\Leftrightarrow x^3+3\cdot x^2\cdot\dfrac{1}{2}+3\cdot x\cdot\dfrac{1}{4}+\left(\dfrac{1}{2}\right)^3=\dfrac{1}{64}\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^3=\left(\dfrac{1}{4}\right)^3\)

\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{1}{4}\)

hay \(x=-\dfrac{1}{4}\)

c) Ta có: \(8x^3-50x=0\)

\(\Leftrightarrow2x\left(4x^2-25\right)=0\)

\(\Leftrightarrow x\left(2x-5\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)

e) Ta có: \(x\left(x+3\right)-x^2-3x=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)

f) Ta có: \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-3\end{matrix}\right.\)

14 tháng 9 2021

undefined

14 tháng 9 2021

b) (x+1)^3-x(x-2)^2+x-1=0

 ⇔x^3+3x^2+3x+1-(x^3-4x^2+4x)=0

⇔ x^3+3x^2+3x+1-x^3+4x^2-4x+x-1=0

⇔7x^2-2=0

⇔7x^2=2

⇔7x^2=-2⇔x=-3

⇔7x^2=2⇔x=-căn 5

 

13 tháng 7 2021

a) x(x - 5) - 4x + 20 = 0

\(\Leftrightarrow\) x(x - 5) - (4x + 20)

\(\Leftrightarrow\) x(x - 5) - 4(x - 5) = 0

\(\Leftrightarrow\) (x - 5)(x - 4)

Khi x - 5 = 0 hoặc x - 4 = 0

 \(\Leftrightarrow\) x = 5           \(\Leftrightarrow\) x = 4

 Vậy S = \(\left\{5;4\right\}\)

b) x(x + 6) - 7x - 42 = 0

 \(\Leftrightarrow\) x(x + 6) - (7x - 42) = 0

 \(\Leftrightarrow\) x(x + 6) - 7(x + 6) = 0

 \(\Leftrightarrow\) (x + 6)(x - 7) = 0

Khi x - 6 = 0 hoặc x - 7 = 0

   \(\Leftrightarrow\) x = 6           \(\Leftrightarrow\) x = 7

 Vậy S = \(\left\{6;7\right\}\)

c) x3 - 5x2 - x + 5 = 0

 \(\Leftrightarrow\) (x3 - 5x2) - (x + 5) = 0

 \(\Leftrightarrow\) x2 (x - 5) - (x - 5) = 0

 \(\Leftrightarrow\) (x - 5)(x2 - 1) = 0

 \(\Leftrightarrow\) (x - 5)(x - 1)(x + 1) = 0

 Khi x - 5 = 0 hoặc x - 1 = 0 hoặc x + 1 = 0

   \(\Leftrightarrow\) x = 5           \(\Leftrightarrow\) x = 1            \(\Leftrightarrow\) x = -1

 Vậy S = \(\left\{5;1;-1\right\}\)

d) 4x2 - 25 - (2x - 5)(3x + 7) = 0

\(\Leftrightarrow\) (2x)2 - 52 - (2x - 5)(3x + 7) = 0

\(\Leftrightarrow\) (2x - 5)(2x + 5) - (2x - 5)(3x + 7) = 0

\(\Leftrightarrow\) (2x - 5) \([\left(2x+5\right)-\left(3x+7\right)]\) = 0

\(\Leftrightarrow\) (2x - 5) ( 2x + 5 - 3x + 7) = 0

\(\Leftrightarrow\) (2x - 5)( -x + 12) = 0

Khi 2x - 5 = 0 hoặc -x + 12 = 0

  \(\Leftrightarrow\) 2x = 5             \(\Leftrightarrow\)   -x = -12

  \(\Leftrightarrow\) x = \(\dfrac{5}{2}\)              \(\Leftrightarrow\) x = 12

 Vậy S = \(\left\{\dfrac{5}{2};12\right\}\)

e) x3 + 27 + (x + 3)(x - 9) = 0

\(\Leftrightarrow\) x3 - 33 + (x + 3)(x - 9) = 0

\(\Leftrightarrow\) (x - 3)(x2 - 3x + 9) + (x + 3)(x - 9) = 0

\(\Leftrightarrow\) (x - 3) \(\left[\left(x^2-3x+9\right)+\left(x-9\right)\right]\) = 0

\(\Leftrightarrow\) (x - 3) ( x2 - 3x + 9 + x - 9) = 0

\(\Leftrightarrow\) (x - 3)(x2 - 2x) = 0

\(\Leftrightarrow\) (x - 3)x(x - 2)

 Khi x - 3 = 0 hoặc x = 0 hoặc x - 2 = 0

    \(\Leftrightarrow\) x = 3                            \(\Leftrightarrow\) x = 2

 Vậy S = \(\left\{3;0;2\right\}\)

 Chúc bạn học tốt

a) Ta có: \(x\left(x-5\right)-4x+20=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\)

b) Ta có: \(x\left(x+6\right)-7x-42=0\)

\(\Leftrightarrow x\left(x+6\right)-7\left(x+6\right)=0\)

\(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)

20 tháng 4 2022

a,\(x\in\left\{5;1,5;\dfrac{-4}{3}\right\}\)

2 tháng 3 2022

a. \(x^2-25-3.\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(x+5\right)-3.\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(x+5-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

b. \(\left(3x+1\right)^2=\left(2x-5\right)\\ \Leftrightarrow9x^2+6x+1=2x-5\\ \Leftrightarrow9x^2+6x-2x=-5-1\\ \Leftrightarrow9x^2+4x=-6\\ \Leftrightarrow x\left(9x+4\right)=-6\\ \Leftrightarrow\left[{}\begin{matrix}x=-6\\9x+4=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=-\dfrac{10}{9}\end{matrix}\right.\)

c. \(2x^2-7x+6=0\\ \Leftrightarrow2x^2-7x=-6\\ \Leftrightarrow x\left(2x-7\right)=-6\\ \Leftrightarrow\left[{}\begin{matrix}x=-6\\x=\dfrac{1}{2}\end{matrix}\right.\)

2 tháng 3 2022

a, \(\left(x-5\right)\left(x+5\right)-3\left(x-5\right)=0\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\Leftrightarrow x=-2;x=5\)

b, bạn ktra lại đề, thường thường ngta hay cho 2 vế cùng bình phương 

c, \(2x^2-7x+6=0\Leftrightarrow\left(2x-3\right)\left(x-2\right)=0\Leftrightarrow x=\dfrac{3}{2};x=2\)

10 tháng 10 2021

a, \(2x\left(x-3\right)-15+5x=0\\ \Rightarrow2x\left(x-3\right)-\left(15-5x\right)=0\\ \Rightarrow2x\left(x-3\right)-5\left(3-x\right)=0\\ \Rightarrow\left(2x+5\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{2}\\x=3\end{matrix}\right.\)

b, \(x^3-7x=0\\ \Rightarrow x\left(x^2-7\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=\pm7\end{matrix}\right.\)

c, \(\left(2x-3\right)^2-\left(x+5\right)^2=0\\ \Rightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\\ \Rightarrow\left(x-8\right)\left(3x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)

Xem lại đề câu d 

=>x-3=0

hay x=3

9 tháng 1 2022

\(\left(x-3\right)\left(2x^2+3\right)=0\\ \Rightarrow x-3=0\left(vì.2x^2+3>0\right)\\ \Rightarrow x=3\)

a: 3(x+7)-2x+5>0

=>3x+21-2x+5>0

=>x+26>0

=>x>-26

Sửa đề: \(\dfrac{x+2}{18}-\dfrac{x+3}{8}< \dfrac{x-1}{9}-\dfrac{x-4}{24}\)

=>\(\dfrac{4\left(x+2\right)}{72}-\dfrac{9\left(x+3\right)}{72}< \dfrac{8\left(x-1\right)}{72}< \dfrac{3\left(x-4\right)}{72}\)

=>\(4\left(x+2\right)-9\left(x+3\right)< 8\left(x-1\right)-3\left(x-4\right)\)

=>\(4x+8-9x-27< 8x-8-3x+12\)

=>-5x-19<5x+4

=>-10x<23

=>\(x>-\dfrac{23}{10}\)

b: \(3x+2+\left|x+5\right|=0\left(1\right)\)

TH1: x>=-5

(1) trở thành: 3x+2+x+5=0

=>4x+7=0

=>\(x=-\dfrac{7}{4}\left(nhận\right)\)

TH2: x<-5

=>x+5<0

=>|x+5|=-x-5

Phương trình (1) sẽ trở thành:

\(3x+2-x-5=0\)

=>2x-3=0

=>2x=3

=>\(x=\dfrac{3}{2}\)

24 tháng 2 2022

\(a)\left(x-2\right)\left(x^2+2x-3\right)\ge0.\)

Đặt \(f\left(x\right)=\left(x-2\right)\left(x^2+2x-3\right).\)

Ta có: \(x-2=0.\Leftrightarrow x=2.\\ x^2+2x-3=0.\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=-3.\end{matrix}\right.\)

Bảng xét dấu:

x                   \(-\infty\)       -3       1       2     \(+\infty\)

\(x-2\)                    -      |    -   |   -   0   +

\(x^2+2x-3\)         +     0    -   0  +   |    +

\(f\left(x\right)\)                     -     0    +  0   -  0   +

Vậy \(f\left(x\right)\ge0.\Leftrightarrow x\in\left[-3;1\right]\cup[2;+\infty).\)

\(b)\dfrac{x^2-9}{-x+5}< 0.\)

Đặt \(g\left(x\right)=\dfrac{x^2-9}{-x+5}.\)

Ta có: \(x^2-9=0.\Leftrightarrow\left[{}\begin{matrix}x=3.\\x=-3.\end{matrix}\right.\)

\(-x+5=0.\Leftrightarrow x=5.\)

Bảng xét dấu:

x            \(-\infty\)      -3       3        5       \(+\infty\)

\(x^2-9\)            +   0   -   0   +   |    +

\(-x+5\)          +    |   +   |    +  0    -

\(g\left(x\right)\)              +    0   -   0   +  ||    -

Vậy \(g\left(x\right)< 0.\Leftrightarrow x\in\left(-3;3\right)\cup\left(5;+\infty\right).\)