K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2021

nhờ các bạn giải giúp mình này mk sẽ k cho

17 tháng 2 2021

hello bạn =))

NV
7 tháng 4 2019

\(a^3+11a=a\left(a^2+11\right)\)

Nếu \(a=3k+1\Rightarrow a^2+11=9k^2+6k+12⋮3\)

Nếu \(a=3k+2\Rightarrow a^2+11=9k^2+12k+15⋮3\)

\(\Rightarrow\left(a^3+11a\right)⋮3\) \(\forall a\in Z\) (1)

Mặt khác ta có:

\(2017\equiv1\left(mod3\right)\Rightarrow2017^{2017}\equiv1\left(mod3\right)\)

\(\Rightarrow\left(2017^{2017}+1\right)\equiv2\left(mod3\right)\)

\(\Rightarrow\left(2017^{2017}+1\right)⋮̸3\) (2)

Từ (1), (2) \(\Rightarrow\left(2017^{2017}+1\right)⋮̸\left(a^3+11a\right)\) \(\forall a\in Z\)

NV
9 tháng 3 2021

Xét bộ gồm 2016 số: \(2^1;2^2;...;2^{2016}\)

Do 2017 nguyên tố đồng thời \(2^k\) là lũy thừa của 1 số nguyên tố khác 2017 nên \(2^k\) ko chia hết 2017 với mọi k 

Do đó tất cả các số trong bộ số nói trên đều ko chia hết 2017

- Nếu các số trong dãy trên chia 2017 có số dư đôi một khác nhau \(\Rightarrow\) có 2016 số dư \(\Rightarrow\) có đúng 1 số chia 2017 dư 1, giả sử đó là \(2^n\) thì \(2^n-1⋮2017\)

- Nếu tồn tại 2 số trong 2016 số trên có cùng số dư khi chia 2017 là \(2^i\) và \(2^j\) với \(1\le i< j\le2016\Rightarrow1\le j-i< 2016\)

\(\Rightarrow2^j-2^i⋮2017\)

\(\Rightarrow2^i\left(2^{j-i}-1\right)⋮2017\)

\(\Rightarrow2^{j-i}-1⋮2017\) (do \(2^i\) ko chia hết 2017)

\(\Rightarrow n=j-i\) thỏa mãn yêu cầu

10 tháng 2 2018

Tham khảo bài này :

cách 1: 
xét 3^k. 
chọn k từ 1 đến 999 ta được dãy số 
3; 3² ; 3³;...; 3^999 
999 số trên khi chia cho 1000 sẽ được 999 số dư 
(0,1...999) 
xét 2 trh: 
trh 1: số dư của các số trong dãy đôi một khác nhau 
=> tồn tại một số trong dãy chia 1000 dư 1 
=> 3^a -1 chia hết 1000 
=> đpcm 

trh2: số dư của các số trong dãy không khác nhau đôi một 
=> sẽ có it nhất 2 số đồng dư 
2 số đó là: 3^m và 3ⁿ (1≤m<n≤999) 
=> hiệu của 2 số này chia hết cho 1000 
=> 3ⁿ - 3^m = h.1000 
mà: 3ⁿ - 3^m = 3^m.(3^(n-m) -1) 
lại có: 3^m không chia hết cho 1000 
=> 3^(n-m) - 1 chia hết cho 1000 
mà 1≤m<n≤999 => 0 ≤ n - m ≤ 999 
=> đpcm 
vậy tồn tại số k thuộc N sao cho 3^k-1 chia hết 1000 
.......... ....... 
cách 2: 
xét k= 2n (n chẵn) 
A= 3^(2n) -1 
A= (10-1)^n -1 
khai triển nhị thức ta đc: 
A= 10ⁿ - 1Cn.10^(n-1) + 2Cn.10^(n-2) +...+ (n-2)Cn.10^2 - (n-1)Cn.10 +1 -1 
A= 1000.[10^(n-2) -.....(n-3)Cn] + 100.n.(n+1)\2 - 10n 
lấy n= 100m 
=>B= n.(n+1)\2.100 - 10n 
=>B= 1000.(50.101m -m) 
=> A chia hết 1000 khi k= 200m