K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2019

mình không biết là đúng không nhưng mình làm vậy này 
Biến đổi vế phải ta có :

VP=y^4-6y^3+11y^2-6y=(y-1)(y-2)(y-3)=(x-2019)^2

=> y-1 ,y-2, y-3 là 3 số nguyên liên tiếp 

mà tích của 3 số nguyên liên tiếp không thể là số chính phương 

=>{x-2019=0

     {y-1=0 hoặc y-2=0 hoặc y-3 =0 

vậy ta có các cặp x,y là (2019:1) hoặc (2019:2)hoặc (2019;3)

9 tháng 7 2022

@vvvv sai rồi nha. 

18 tháng 3 2018

làm được thì đã ghi rồi

10 tháng 2 2019

pt VP thành trùng phương rồi sử dụng đánh giá 

5 tháng 10 2021

\(1,\\ b,\Leftrightarrow\left(x^2+4x+4\right)+\left(y-1\right)^2=25\\ \Leftrightarrow\left(x+2\right)^2+\left(y-1\right)^2=25\)

Vậy pt vô nghiệm do 25 ko phải tổng 2 số chính phương

\(2,\\ a,\Leftrightarrow x^2-\left(y^2-6y+9\right)=47\\ \Leftrightarrow x^2-\left(y-3\right)^2=47\)

Mà 47 ko phải hiệu 2 số chính phương nên pt vô nghiệm

\(b,\Leftrightarrow\left(x-2\right)^2+\left(3y-1\right)^2=16\)

Mà 16 ko phải tổng 2 số chính phương nên pt vô nghiệm

5 tháng 10 2021

2b,

Vì 16 ko đồng dư với 1 (mod 4) nên 16 ko phải là tổng 2 scp

Định lý Fermat về tổng của hai số chính phương – Wikipedia tiếng Việt

vô đây đọc nhé

22 tháng 11 2018

x4 + 4x2y + 3y2 +6y - 16 = 0

(x4 +4x2y + 4y2) - (y2 -6y + 9) - 7 = 0

(x2 + 2y)2 - (y-3)2 = 7

(x2 +y - 3).(x2 +3y - 3) = 7

....

bn tự lập bảng nha

12 tháng 1 2021

Có thể thay đề bài từ tìm nghiệm nguyên thành tìm nghiệm.

Ta có: \(x^2-10x+29=\left(x-5\right)^2+4\ge4>0;y^2+6y+14=\left(y+3\right)^2+5\ge5>0\).

Từ đó \(\left(x^2-10x+29\right)\left(y^2+6y+14\right)\ge4.5=20\).

Do đẳng thức xảy ra nên ta phải có: \(\left\{{}\begin{matrix}\left(x-5\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=-3\end{matrix}\right.\).

Vậy...

20 tháng 6 2019

Ta có \(2^x+\left(x^2+1\right)\left(y-2\right)\left(y-4\right)=0\)

Mà \(2^x>0,x^2+1>0\)

=> \(\left(y-2\right)\left(y-4\right)< 0\)

=> \(2< y< 4\)

=> \(y=3\)

Thay y=3 vào đề bài ta có:

\(2^x-\left(x^2+1\right)=0\)

=> \(2^x=x^2+1\)

Mà \(2^x\)chẵn với \(x>0\)

=> \(x\)lẻ

Đặt \(x=2k+1\)(k không âm)

Khi đó \(2^{2k+1}=\left(2k+1\right)^2+1\)

=> \(2.2^{2k}=4k^2+4k+2\)

=> \(2^{2k}=2k^2+2k+1\)

+ k=0 => \(2^0=1\)thỏa mãn 

=> \(x=1\)

\(k>0\)=> \(2^k\)chẵn 

Mà \(2k^2+2k+1\)lẻ với mọi k

=> không giá trị nào của k thỏa mãn

Vậy x=1,y=3