Cho hàm số f(x) xác định với mọi x thuộc R và thỏa mãn tính chất
(1-x^2).f(x)=x.f(x+1)
nhanh lên nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2 t/h : vi x va -x đối nhau
t/h 1: x=3
t/h2 :x=3
thay trường hợp 2 vào đề ra thì ra
1) Xét với x=3x=3 thì : 3.f(5)=(32−9).f(3)3.f(5)=(32−9).f(3)
⇒3.f(5)=0⇒f(5)=0⇒3.f(5)=0⇒f(5)=0 (*)
2) Xét với x=0⇔0=−9.f(0)⇒f(0)=0x=0⇔0=−9.f(0)⇒f(0)=0
nên x=0x=0 là 1 nghiệm của đa thức f(x)f(x) (1)
Xét với x=−3⇔3.f(−1)=0⇒f(−1)=0x=−3⇔3.f(−1)=0⇒f(−1)=0
nên x=−1x=−1 là 1 nghiệm của đa thức f(x)f(x) (2)
Từ (*)(1)(2) ⇒⇒ f(x)f(x) có ít nhất 3 nghiệm.
\(a,f\left(5\right)\Rightarrow x=3\\ 3f\left(5\right)=0f\left(3\right)\Rightarrow f\left(5\right)=0\\ b,x=0\Rightarrow0f\left(2\right)=-9f\left(0\right)\Rightarrow f\left(0\right)=0\)
=> x = 0 là nghiệm
\(x=-3\Rightarrow-3f\left(-1\right)=\left(9-9\right)f\left(-3\right)=0f\left(-3\right)\\ \Rightarrow f\left(-1\right)=0\)
=> x = -1 là nghiệm
Theo ý a) ta có \(x=5\)
\(\Rightarrow f\left(x\right)\) có 3 nghiệm \(=\left\{0;-1;5\right\}\)
bài 1: f(x) + 2f(2-x)=3x (1)
f(2-x)+2[(2-(2-x)]=3(2-x) suy ra f(2-x)+2f(x)=6-3x suy ra 2f(2-x)+4f(x)=12-6x (2)
Lấy (2)-(1) ta có: 4f(x)-f(x)=12-6x-3x suy ra f(x)=4-3x
vậy f(2)=4-3*2=-2
Bài 2 tương tự: f(x)+3f(1/x)=x^2 (1)
f(1/x)+3f(x)=1/x^2 suy ra 3f(1/x)+9f(x)=3/x^2 (2)
Lấy (2)-(1) ta có: 9f(x)-f(x)=3/x^2-x^2 suy ra f(x)=(3-x^4)/8x^2
Vậy f(2)=(3-2^4)(8*2^2)=-13/32