K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(M=1+5+5^2+...+5^{2005}\)

\(\Rightarrow5M=5+5^2+5^3+...+5+5^{2006}\)

\(\Rightarrow5M-M=\left(5+5^2+...+5^{2006}\right)-\left(1+5+...+5^{2005}\right)\)

\(\Rightarrow5M-M=4M=5^{2006}-1\Rightarrow M=\frac{5^{2006}-1}{4}\)

\(\frac{N}{4}=\frac{5^{2006}}{4}>\frac{5^{2006}-1}{4}=M\Rightarrow M< \frac{N}{4}\)

20 tháng 3 2017

Ta có:

\(1.2.3....99=\dfrac{1.2.3.4....99.100}{2.4.6....100}\)

\(=\dfrac{1}{2.1}.\dfrac{2}{2.2}...\dfrac{100}{2.50}\)

\(=\dfrac{1.2.3.4....100}{1.2.3....50.2.2.2...2}\) ( \(50\) thừa số \(2\) )

\(=\dfrac{51.51...100}{2.2.2...2}\)

\(=\dfrac{51}{2}.\dfrac{52}{2}.\dfrac{53}{2}...\dfrac{100}{2}\)

\(\Rightarrow A=B\left(đpcm\right)\)

12 tháng 2 2017

1. Do \(\frac{a}{b}< 1\Leftrightarrow\)a<b \(\Leftrightarrow\)a+n<b+n

Ta có: \(\frac{a}{b}\)= 1 - \(\frac{a-b}{b}\)

          \(\frac{a+n}{b+n}\)= 1- \(\frac{a-b}{b+n}\)

Do \(\frac{a-b}{b}\)>\(\frac{a-b}{b+n}\)=> \(\frac{a}{b}\)<\(\frac{a+n}{b+n}\)

2.Tương tự

21 tháng 3 2017

ko hiểu

26 tháng 3 2015

bạn giúp mình mình sẽ giúp bạn nhé

19 tháng 1 2018

ta có : x < y hay a/m < b/m   => a < b.
So sánh x, y, z ta chuyển chúng cùng mẫu : 2m
x =  a/m  = 2a/ 2m và y = b/m = 2b/2m  và z = (a + b) / 2m
mà : a < b
suy ra : a + a < b + a
hay 2a < a + b
suy ra x < z (1)
mà : a < b
suy ra : a + b < b + b
hay a + b < 2b
suy ra z < y (2)

:D

10 tháng 5 2021

\(M=\frac{1}{2}-\frac{3}{4}+\frac{5}{6}-\frac{7}{8}+...+\frac{197}{198}-\frac{199}{200}\)
\(=\left(1-\frac{1}{2}\right)-\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{6}\right)-\left(1-\frac{1}{8}\right)+...+\left(1-\frac{1}{198}\right)-\left(1-\frac{1}{200}\right)\)=\(=-\frac{1}{2}+\frac{1}{4}-\frac{1}{6}+\frac{1}{8}-...-\frac{1}{198}+\frac{1}{200}\)
\(=-\frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=-\frac{1}{2}\left[\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\right]\)
\(=-\frac{1}{2}\left[\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{50}\right)\right]\)
\(=-\frac{1}{2}\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\right)\)
\(=-\frac{1}{2}.N\)
\(Tacó:\)
\(M:N=-\frac{1}{2}.N:N=-\frac{1}{2}\)