Tìm các số nguyên x, y thỏa mãn: \(x^2-y^2+3x+2y+1=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pt <=> 9x^2+3y^2+12xy+12x+6y+15 = 0
<=> [(9x^2+12xy+4y^2)+2.(3x+2y).2+4] - (y^2+2y+1) + 12 = 0
<=> [(3x+2y)^2+2.(3x+2y).2+4] -(y+1)^2 = -12
<=> (3x+2y+2)^2 - (y+1)^2 = -12
<=> (3x+2y+2+y+1).(3x+2y+2-y-1) = -12
<=> (3x+3y+3).(3x+y+1) = -12
<=> (x+y+1).(3x+y+1) = -4
Đến đó bạn dùng quan hệ ước bội cho các số nguyên mà giải nha !
Tk mk nha
#) Giải :
y( x -2) + 3x - 6 = 0
y( x - 2) + 3( x - 2) = 0
( y + 3 )( x - 2) = 0
\(\Rightarrow\orbr{\begin{cases}y+3=0\\x-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}y=-3\\x=2\end{cases}}\)
Mk cx hoq chak đâu ạ :33
#) Giải :
b) xy + 3x - 2y - 7 = 0
xy + 3x - 2y - 6 = 1
x( y + 3) -2(y + 3) = 1
( x-2)( y+3) = 1
Ta có bảng sau :
x - 2 -1 1
y+ 3 -1 1
x 1 3
y -4 -2
Vậy ( x;y) thuộc {(1;3);(-4;-2)}
Chúc bn hok tốt ạ :33
\(3x^2+y^2+4xy=5x+2y+1\)
\(\Leftrightarrow3x^2+x\left(4y-5\right)+\left(y^2-2y-1\right)=0\left(1\right)\)
Coi phương trình (1) là phương trình ẩn x tham số y, ta có:
\(\Delta=\left(4y-5\right)^2-3.4.\left(y^2-2y-1\right)\)
\(=16y^2-40y+25-12y^2+24y+12\)
\(=4y^2-16y+37\)
Để phương trình (1) có nghiệm nguyên thì \(\Delta\) phải là số chính phương hay \(\Delta=4y^2-16y+37=a^2\) (a là số tự nhiên).
\(\Rightarrow4y^2-16y+16+21=a^2\)
\(\Rightarrow a^2-\left(2y-4\right)^2=21\)
\(\Rightarrow\left(a-2y+4\right)\left(a+2y-4\right)=21\)
\(\Rightarrow a-2y+4;a+2y-4\) là các ước số của 21.
Với \(y\ge2\Rightarrow a-2y+4\le a+2y-4\) và \(a+2y-4\ge0\) Lập bảng:
a-2y+4 | 1 | 3 |
a+2y-4 | 21 | 7 |
a | 11 | 5 |
y | 7 | 3 |
Với \(y\ge2\Rightarrow a-2y+4\le a+2y-4\) và \(a+2y-4\ge0\) Lập bảng:
a-2y+4 | 21 | 7 |
a+2y-4 | 1 | 3 |
a | 11 | 5 |
y | -3(loại vì y>0) | 1 |
Với a=11, y=7. Phương trình (1) có 2 nghiệm:
\(x_1=\dfrac{-\left(4.7-5\right)+\sqrt{11^2}}{6}=-2\) (loại vì x>0)
\(x_2=\dfrac{-\left(4.7-5\right)-\sqrt{11^2}}{6}=-\dfrac{17}{3}\left(loại\right)\)
Với \(a=5;y=3\). Phương trình (1) có 2 nghiệm:
\(x_1=\dfrac{-\left(4.3-5\right)+\sqrt{5^2}}{6}=-\dfrac{1}{3}\left(loại\right)\)
\(x_2=\dfrac{-\left(4.3-5\right)-\sqrt{5^2}}{6}=-2\) (loại vì x>0)
Với \(a=5;y=1\). Phương trình (1) có 2 nghiệm:
\(x_1=\dfrac{-\left(4.1-5\right)+\sqrt{5^2}}{6}=1\)
\(x_2=\dfrac{-\left(4.1-5\right)-\sqrt{5^2}}{6}=-\dfrac{2}{3}\left(loại\right)\)
Vậy x,y nguyên dương thỏa mãn phương trình trên là \(x=y=1\)
cho mình hỏi sao để nó có nghiệm nguyên khi nó là số chính phương thế bạn
\(x^2-\left(y-3\right)x-2y-1=0\)
\(\Leftrightarrow y\left(x+2\right)=x^2+3x-1\)
Dễ thây \(x\ne-2\)
\(\Rightarrow y=\frac{x^2+3x-1}{x+2}=x+1-\frac{3}{x+2}\)
Để y nguyên thì x + 2 là ươc của 3 hay
\(\left(x+2\right)=\left\{-3;-1;1;3\right\}\)
\(x^2-\left(y-3\right)x-2y-1=0\)
\(\Leftrightarrow x^2-xy+3x-2y-1=0\)
\(\Leftrightarrow\left(x^2-xy\right)+\left(2x-2y\right)+x-1=0\)
\(\Leftrightarrow x\left(x-y\right)+2\left(x-y\right)+\left(x+2\right)-3=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-y\right)+\left(x+2\right)=3\)
\(\Leftrightarrow\left(x+2\right)\left(x-y+1\right)=3\)
Ta có x, y \(\in\) Z nên x + 2 là ước của 3 \(\Rightarrow x+2\in\left\{1;3;-1;-3\right\}\). Ta có bảng sau:
x + 2 | x - y + 1 | x | y |
1 | 3 | -1 | -3 |
3 | 1 | 1 | 1 |
-1 | -3 | -3 | 1 |
-3 | -1 | -5 | -3 |
Ta có : x2 - y2 + 3x + 2y + 1 = 0
<=> (x2 + 3x + 9/4) - (y2 - 2y + 1) - 1/4 = 0
<=> (x + 3/2)2 - (y - 1)2 = 1/4
<=> 4[x + 3/2)2 - (y - 1)2] = 1
<=> 4(x + 3/2)2 - 4(y - 1)2 = 1
<=> (2x + 3)2 - (2y - 2)2 = 1
<=> (2x + 2y - 1)(2y - 2y + 5) = 1
Vì x ;y nguyên => \(\hept{\begin{cases}2x+2y-1\inℤ\\2x-2y+5\inℤ\end{cases}}\)
Khi đó 1 = 1.1 = (-1).(-1)
Lập bảng xét các trường hợp
Vậy x = -1 ; y = 2 là giá trị cần tìm
\(x^2-y^2+3x+2y+1=0\)
\(\Leftrightarrow4x^2-4y^2+12x+8y+4=0\)
\(\Leftrightarrow\left(4x^2+12x+9\right)-\left(4y^2-8y+4\right)-1=0\)
\(\Leftrightarrow\left(2x+3\right)^2-\left(2y-2\right)^2=1\)
\(\Leftrightarrow\left[\left(2x+3\right)-\left(2y-2\right)\right].\left[\left(2x+3\right)+\left(2y-2\right)\right]=1\)
\(\Leftrightarrow\left(2x+3-2y+2\right)\left(2x+3+2y-2\right)=1\)
\(\Leftrightarrow\left(2x-2y+5\right)\left(2x+2y-1\right)=1\)
Vì \(x,y\inℤ\)\(\Rightarrow2x-2y+5\)và \(2x+2y-1\)là ước của 1
Lập bảng giá trị ta có:
Vậy không có cặp giá trị \(\left(x;y\right)\)nguyên thỏa mãn đề bài