GHPT \(\left\{{}\begin{matrix}xy^2+2y^2-2=x^2+3x\\x+y=3\sqrt{y-1}\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐK:x\le6;y\ge3\\ \left\{{}\begin{matrix}x^2+2y=xy+4\left(1\right)\\x^2-x-3-x\sqrt{6-x}=\left(y-3\right)\sqrt{y-3}\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x^2-4+2y-xy=0\\ \Leftrightarrow\left(x-2\right)\left(x+2\right)-y\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x-y+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=y-2\end{matrix}\right.\)
Từ đó thế vào PT(2)
Từ pt thứ nhất: \(\Leftrightarrow x+1+\sqrt{\left(x+1\right)^2+1}=\left(-y\right)+\sqrt{\left(-y\right)^2+1}\)
Xét hàm \(f\left(t\right)=t+\sqrt{t^2+1}\Rightarrow f'\left(t\right)=1+\dfrac{t}{\sqrt{t^2+1}}=\dfrac{t+\sqrt{t^2+1}}{\sqrt{t^2+1}}\)
\(f'\left(t\right)>\dfrac{t+\sqrt{t^2}}{\sqrt{t^2+1}}=\dfrac{t+\left|t\right|}{\sqrt{t^2+1}}\ge0\Rightarrow f'\left(t\right)>0\) ; \(\forall t\)
\(\Rightarrow f\left(t\right)\) đồng biến trên R
\(\Rightarrow x+1=-y\Rightarrow y=-x-1\)
Thế xuống pt dưới:
\(x^3-\left(3x^2-2x-8\right)\sqrt{2x^2+x-1}=0\)
Bạn coi lại đề, pt vô tỉ này ko giải được
\(ĐK:x\ge\dfrac{1}{5};y\ge\dfrac{3}{8}\)
\(PT\left(1\right)\Leftrightarrow\dfrac{3x^2-3y^2}{\sqrt{5x^2+2xy+2y^2}-\sqrt{2x^2+2xy+5y^2}}=3\left(x+y\right)\\ \Leftrightarrow3\left(x+y\right)\left(\dfrac{x-y}{\sqrt{5x^2+2xy+2y^2}-\sqrt{2x^2+2xy+5y^2}}-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+y=0\\\dfrac{x-y}{\sqrt{5x^2+2xy+2y^2}-\sqrt{2x^2+2xy+5y^2}}=1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x-y=\sqrt{5x^2+2xy+2y^2}-\sqrt{2x^2+2xy+5y^2}\\ \Leftrightarrow\left(x-y\right)=\dfrac{3\left(x^2-y^2\right)}{\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}}\\ \Leftrightarrow\left(x-y\right)\left[\dfrac{3\left(x+y\right)}{\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}}-1\right]=0\)
\(\Leftrightarrow x=y\)
Với \(x+y=0\Leftrightarrow x=-y\), thay vào PT 2
\(\Leftrightarrow3\left(-y\right)\left(y-7\right)+10=\sqrt{10\left(-y\right)-2}+2\sqrt{8y-3}\\ \Leftrightarrow3y\left(7-y\right)+10=\sqrt{-10y-2}+2\sqrt{8y-3}\)
ĐK: \(\left\{{}\begin{matrix}-10y-2\ge0\\8y-3\ge0\end{matrix}\right.\Leftrightarrow y\in\varnothing\)
Với \(x-y=0\Leftrightarrow x=y\), thay vào PT 2
\(\Leftrightarrow3x^2-21x+10=\sqrt{10x-2}+2\sqrt{8x-3}\left(x\ge\dfrac{3}{8}\right)\\ \Leftrightarrow3x^2-24x+9=\sqrt{10x-2}-\left(x+1\right)+2\sqrt{8x-3}-2x\)
\(\Leftrightarrow3\left(x^2-8x+3\right)=\dfrac{-x^2+8x-3}{\sqrt{10x-2}+\left(x+1\right)}+\dfrac{2\left(-x^2+8x-3\right)}{\sqrt{8x-3}+x}\\ \Leftrightarrow\left(x^2-8x+3\right)\left(3+\dfrac{1}{\sqrt{10x-2}+x+1}+\dfrac{2}{\sqrt{8x-3}+x}\right)=0\)
Dễ thấy ngoặc lớn vô nghiệm với \(x\ge\dfrac{3}{8}>0\)
\(\Leftrightarrow x^2-8x+3=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4+\sqrt{13}\left(n\right)\\x=4-\sqrt{13}\left(n\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=4+\sqrt{13}\\y=4-\sqrt{13}\end{matrix}\right.\)
Vậy HPT có nghiệm \(\left(x;y\right)\in\left\{\left(4+\sqrt{13};4+\sqrt{13}\right);\left(4-\sqrt{13};4-\sqrt{13}\right)\right\}\)
bạn làm nhầm rồi hay sao đấy
mình tìm ra cách rồi là
Từ pt(1) \(\sqrt{\left(2x+y\right)^2+\left(x-y\right)^2}+\sqrt{\left(2y+x\right)^2+\left(x-y\right)^2}=3\left(x+y\right)\)
Đặt a=2x+y;b=2y+x\(\Rightarrow\) 3(x+y)=a+b;x-y=a-b
rồi bình phương ra
Mk hướng dẫn bạn cách làm thôi nha (Tại nó dài lắm!)
\(\left\{{}\begin{matrix}xy^2+2y^2-2=x^2+3x\\x+y=3\sqrt{y-1}\end{matrix}\right.\) (y \(\ge\) 1)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}y^2\left(x+2\right)-\left(x+1\right)\left(x+2\right)=0\\x+y=3\sqrt{y-1}\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left(x+2\right)\left(y^2-x-1\right)=0\\x+y=3\sqrt{y-1}\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x+2=0\\y^2-x-1=0\end{matrix}\right.\\x+y=3\sqrt{y-1}\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=-2\\x=y^2-1\end{matrix}\right.\\x+y=3\sqrt{y-1}\end{matrix}\right.\)
Xét các TH1: \(\left\{{}\begin{matrix}x=-2\\-2+y=3\sqrt{y-1}\end{matrix}\right.\)
Giải hpt tìm được: \(\left[{}\begin{matrix}y=\dfrac{13+\sqrt{117}}{2}\left(TM\right)\\y=\dfrac{13-\sqrt{117}}{2}\left(KTM\right)\end{matrix}\right.\)
\(\Rightarrow\) y = \(\dfrac{13+\sqrt{117}}{2}\)
Vậy ...
TH2: \(\left\{{}\begin{matrix}x=y^2-1\\y^2-1+y=3\sqrt{y-1}\end{matrix}\right.\)
Chứng minh được pt thứ hai vô nghiệm
Vậy ...
Chúc bn học tốt!