Tam giác ABC có vuông hay ko nếu AB=20cm, ÁC=25cm, BC=15cm.
Mấy bn giải thích giùm mình luôn ☺️
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,AB^2+AC^2=15^2+20^2=625=25^2=BC^2\)
Vậy ABC là tam giác vuông tại A (pytago đảo)
\(b,\)Áp dụng HTL tam giác ABC vuông tại A, đường cao AH
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=BH\cdot HC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=9\left(cm\right)\\CH=\dfrac{AC^2}{BC}=12\left(cm\right)\\AH=\sqrt{9\cdot12}=6\sqrt{3}\left(cm\right)\end{matrix}\right.\)
Vì AM là phân giác nên \(\dfrac{MB}{MC}=\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow MB=\dfrac{3}{4}MC\)
Mà \(MB+MC=BC=25\Rightarrow\dfrac{7}{4}MC=25\)
\(\Rightarrow MC=\dfrac{100}{7}\left(cm\right);MB=\dfrac{75}{7}\left(cm\right)\)
Xét ΔABC vuông tại A có sin B=AC/BC=4/5
nên \(\widehat{B}\simeq53^0\)
a)Xét ΔABC có: \(AB^2+AC^2=20^2+15^2=625\)
\(BC^2=25^2=625\)
=>ΔABC vuông tại A ( THEO ĐỊNH LÝ PYTAGO ĐẢO)
b)Xét ΔABH vuông tại H(gt)
=> \(AB^2=HB^2+AH^2\) (theo định lý pytago)
=> \(HB^2=AB^2-AH^2=20^2-12^2=256\)
=>HB =16
Có BC=BH+HC
=>HC=BC-BH=25-16=9
A B C H
a) Xét \(\Delta ABC \) có:
\(BC^2=25^2=625\)
\(AB^2+AC^2=20^2+15^2=625\)
\(\Rightarrow BC^2=AB^2+AC^2\left(=625\right)\)
\(\Rightarrow\)\(\Delta ABC\) vuông tại A.
b) Xét \(\Delta ABH\) có: \(AH \perp BC\)
\(\Rightarrow\) \(AB^2=AH^2+BH^2\) (Định lí Pytago)
\(20^2=12^2+BH^2\left(AB=20cm\left(gt\right);AH=12cm\left(gt\right)\right)\)
\(\Rightarrow BH^2=20^2-12^2\)
\(BH^2=256\)
\(\Rightarrow BH=\sqrt{256}=16\left(cm\right)\)
Ta có:
\(BH+HC=BC\) (H nằm giữa B và C)
\(16+HC=25\left(BH=16cm\left(cmt\right);BC=25cm\left(gt\right)\right)\)
\(\Rightarrow HC=25-16\)
\(HC=9\left(cm\right)\)
vẽ hình ra mà coi
tam giác ABC là tam giác vuông
bạn vẽ hình ra mà xem
ủng hộ mình tich nha