K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2021

(a^4+b^4+c^4)^3.(1+1+1)≥(a^3+b^3+c^3)^4≥(a^3+b^3+c^3)3.\(\frac{\text{(a+b+c)^3 }}{9}\)

=3(a^3+b^3+c^3)^3
⇒a^4+b^4+c^4≥a^3+b^3+c^3

13 tháng 2 2018

Ta có: a , b , c > 0  => a , b , c là 3 số thực dương thỏa mãn điều kiện: ab + ac + bc = 0

Áp dụng tính chất tỉ dãy số bằng nhau ta có:

\(\frac{a^4}{b+3c}+\frac{b^4}{c+3a}+\frac{c^4}{a+3b}=\frac{a^4+b^4+c^4}{b+3+c+3a+a+3b}\)

\(\Leftrightarrow\frac{a^4+b^4+c^4}{4a+4b+4c}=\frac{a^4+b^4+c^4}{4\left(a+b+c\right)}=\frac{3}{4}\) (Đúng với đề bài)

\(\RightarrowĐPCM\)

Ps; Không chắc nha! Mình chưa học lớp 9

31 tháng 7 2019

Akai HarumaNguyễn Thành Trương

31 tháng 7 2019

<= 3/4 nha ko phải a+b+c

20 tháng 2 2018

a,b,c>0 => ab+bc+ca=0 Amazing !!

21 tháng 2 2018

Nhầm ab+ac+bc>=3

2 tháng 8 2017

b)

Đề: Cho a, b, c > 0 và abc = ab + bc + ca. Chứng minh rằng: \(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+b+2c}\le\frac{3}{16}\)

~ ~ ~ ~ ~

\(abc=ab+bc+ca\)

\(\Leftrightarrow1=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Áp dụng BĐT \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\), ta có:

\(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+b+2c}\)

\(\le\frac{1}{4}\left(\frac{1}{a+c}+\frac{1}{2\left(b+c\right)}+\frac{1}{2\left(a+b\right)}+\frac{1}{b+c}+\frac{1}{2\left(a+c\right)}+\frac{1}{a+b}\right)\)

\(=\frac{1}{4}\left[\frac{3}{2\left(a+c\right)}+\frac{3}{2\left(b+c\right)}+\frac{3}{2\left(a+b\right)}\right]\)

\(=\frac{3}{8}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{a+b}\right)\)

\(\le\frac{3}{32}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=\frac{3}{16}\) (đpcm)

Dấu "=" xảy ra khi a = b = c 

14 tháng 3 2017

Áp dụng BĐT Cauchy cho 2 số dương ta được :

\(\dfrac{a^2}{b+3c}+\dfrac{b+3c}{16}\ge2\sqrt{\dfrac{a^2}{b+3c}\times\dfrac{b+3c}{16}}=\dfrac{2a}{4}\)

Suy ra \(\dfrac{a^2}{b+3c}\ge\dfrac{2a}{4}-\dfrac{b+3c}{16}\)

Cmtt ta cũng được :

\(\dfrac{b^2}{c+3a}\ge\dfrac{2b}{4}-\dfrac{c+3a}{16}\) \(\dfrac{c^2}{a+3b}\ge\dfrac{2c}{4}-\dfrac{a+3b}{16}\)

Khi đó :

\(\dfrac{a^2}{b+3c}+\dfrac{b^2}{c+3a}+\dfrac{c^2}{a+3b}\ge\dfrac{2a}{4}-\dfrac{b+3c}{16}+\dfrac{2b}{4}-\dfrac{c+3a}{16}+\dfrac{2c}{4}-\dfrac{a+3b}{16}\)

\(\dfrac{2a}{4}-\dfrac{b+3c}{16}+\dfrac{2b}{4}-\dfrac{c+3a}{16}+\dfrac{2c}{4}-\dfrac{a+3b}{16}=\dfrac{a+b+c}{4}\)

Vậy \(\dfrac{a^2}{b+3c}+\dfrac{b^2}{c+3a}+\dfrac{c^2}{a+3b}\ge\dfrac{a+b+c}{4}\)

7 tháng 5 2017

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

\(\Rightarrow\dfrac{a^2}{b+3c}+\dfrac{b^2}{c+3a}+\dfrac{c^2}{a+3b}\ge\dfrac{\left(a+b+c\right)^2}{4\left(a+b+c\right)}=\dfrac{a+b+c}{4}\) (đpcm)

Dấu " = " xảy ra khi \(a=b=c\)