Cho tam giác ABC thỏa mãn a >= b Chứng minh rằng a + ha >= b + hb
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E D F H I G
a) Qua H kẻ HG//AB cắt AC tại G; kẻ HI//AC cắt AB tại I như hình vẽ.
=> HI vuông BH ; CH vuông HG
và AIHG là hình bình hành
Xét tam giác BHI vuông tại H => BH<BI ( mối quan hệ cạnh góc vuông và cạnh huyền) (1)
Xét tam giác CHG vuông tại H => CH<CG
=> CH+BH + AH< BI+CG +AH
Ta lại có AH <AI+IH ( bất đẳng thức trong tam giác AIH)
mà IH=AG ( AIHG là hình bình hành theo cách vẽ )
=> AH < AI+AG
Vậy CH+BH+AH<BI+CG+AI+AG=AB+AC
b) Chứng minh AB+AC+BC>3/2 (HA+HB+HC)
Chứng minh tương tự như câu a.
Ta có: \(AB+AC>HA+HB+HC\)
\(BC+AC>HA+HB+HC\)
\(AB+BC>HA+HB+HC\)
Cộng theo vế ta có:
\(2AB+2AC+2BC>3HA+3HB+3HC\)
=> \(2\left(AB+AC+BC\right)>3\left(HA+HB+HC\right)\)
=> \(AB+AC+BC>\frac{3}{2}\left(HA+HB+HC\right)\)
A B C D E H F
Tam giác ABC có : góc ABC > góc ACB (gt)
=> AC > AB (đl)
AD _|_ BC (gt)
D thuộc BC
=> BD < DC
H thuộc AD
=> HB < HC
b, AD; BE là đường cao
ADcắt BE tại H
=> CH là đường cao (đl)
=> CH _|_ AB (đn)
HF _|_ AB (gt)
=> C; H; F thẳng hàng
c.
\(AB>AD;AC>AD\left(ch>cgv\right)\)
\(\Rightarrow AB+AC>2AD\left(đpcm\right)\)
d
Kẻ \(HN//AC;HM//AB\)
Theo tính chất cặp đoạn chắn,ta có:\(HM=AN\)
Áp dụng bất đẳng thức tam giác ta có:
\(HA< AM+HM=AM+AN\left(1\right)\)
Do \(BH\perp AC;HN//AC\Rightarrow NH\perp HN\)
Xét \(\Delta BHN\) ta có:\(BH< BN\left(2\right)\)
Tương tự trong tam giác CHM có \(CH< CM\left(3\right)\)
Tiừ \(\left(1\right);\left(2\right);\left(3\right)\Rightarrow HA+HB+HC< AM+AN+BN+CM=AB+AC\)
Tương tự,ta có:
\(HA+HB+HC< AB+BC\)
\(HA+HB+HC< BC+AC\)
\(\Rightarrow3\left(HA+HB+HC\right)< 2\left(AB+BC+CA\right)\)
\(\Rightarrow HA+HB+HC< \frac{2}{3}\left(AB+BC+CA\right)\)
Diễn giải:
- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.
Ví dụ 1:
Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75
Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9
- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.
a, Xét hai tam giác ABH và tam giác ADH có
BH=HD(giả thiết)
góc BHA=góc DHA(=90 độ)
AH chung
Suy ra ABH=ADH(dpcm)
b,c,d dài qúa mik ko ghi nổi bạn thông cảm nhé^^
Lời giải:
Ta có: $S_{ABC}=\frac{h_a.a}{2}$
$S_{ABC}=\sqrt{p(p-a)(p-b)(p-c)}$ theo công thức Heron.
$\Rightarrow \frac{h_a.a}{2}=\sqrt{p(p-a)(p-b)(p-c)}$
$\Leftrightarrow \frac{a\sqrt{p(p-a)}}{2}=\sqrt{p(p-a)(p-b)(p-c)}$
$\Leftrightarrow \frac{a}{2}=\sqrt{(p-b)(p-c)}$
$\Rightarrow \frac{a}{2}=\frac{1}{2}\sqrt{(a+c-b)(a+b-c)}$
$\Rightarrow a^2=(a+c-b)(a+b-c)$$\Leftrightarrow a^2=a^2-(b-c)^2\Rightarrow (b-c)^2=0$
$\Rightarrow b=c$ hay $ABC$ là tam giác cân.