Cho a và b là hai số nguyên dương nguyên tố cùng nhau.
Tập hợp các ước chung là số nguyên của a và b là {..........}.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯCLN của 11a +2b và 18a +5b => 11a +2b \(⋮\) d và 18a +5b \(⋮\) d
=> 18.(11a + 2b) \(⋮\) d và 11(18a + 5b) \(⋮\) d
=> 11(18a + 5b) - 18.(11a + 2b) \(⋮\) d => 19b \(⋮\) d => 19 \(⋮\) d hoặc b \(⋮\) d
=> d là ước của 19 hoặc d là ước của b (1)
tương tự ta cũng có 5.(11a + 2b) \(⋮\) d và 2(18a + 5b) \(⋮\)d
=> 5.(11a + 2b) - 2(18a + 5b) \(⋮\)d => 19a \(⋮\)d
=> 19 \(⋮\) d hoặc a \(⋮\) d
=> d là ước của 19 hoặc d là ước của a (2)
Từ (1) và (2) suy ra d là ước của 19 hoặc d là ước chung của a và b
=> d = 19 hoặc d = 1
Vậy ƯCLN của 11a + 2b và 18a + 5b là 19 hoặc 1
Gọi d = ƯCLN(11a+2b,18a+5b) => 11 a + 2 b ⋮ d 18 a + 5 b ⋮ d
=> [11(18a+5b) – 18(11a+2b)] ⋮ d => 19b ⋮ d và [5(11a+2b) – 2(18a+5b)] ⋮ d => 19a ⋮ d
Mà a và b là hai số nguyên tố cùng nhau nên 19 ⋮ d => d ∈ {1;19}
Vậy d = 1 hoặc d = 19, tương ứng với hai số 11a+2b và 18a+5b hoặc nguyên tố cùng nhau hoặc có một ước chung là 19
Gọi d = ƯCLN(11a+2b,18a+5b) => 11 a + 2 b ⋮ d 18 a + 5 b ⋮ d
=> [11(18a+5b) – 18(11a+2b)] ⋮ d => 19b ⋮ d và [5(11a+2b) – 2(18a+5b)] ⋮ d => 19a ⋮ d
Mà a và b là hai số nguyên tố cùng nhau nên 19 ⋮ d => d ∈ {1;19}
Vậy d = 1 hoặc d = 19, tương ứng với hai số 11a+2b và 18a+5b hoặc nguyên tố cùng nhau hoặc có một ước chung19