K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có với x,y nguyên thì :

\(\left\{{}\begin{matrix}x^2\equiv0,1,4\left(mod8\right)\\y^2\equiv0,1,4\left(mod8\right)\end{matrix}\right.\)

\(\Rightarrow x^2+y^2\equiv0,1,2,5\left(mod8\right)\)

Mà : \(x^2+y^2=2014\equiv6\left(mod8\right)\) ( giả thiết )

Nên không tồn tại x,y thỏa mãn đề.

29 tháng 3 2016

dễ quá khoa quá hihihihihihhi laaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaâuhhhhhhhhhhhhhhhhhhhhhhfhủhcftb7ytỷtgyctbgcdgdcxtgỳhgxf                                                               

judhdgdhỳhdehdrfgb7u

bfgtgg

bye : bai

29 tháng 3 2016

làm hộ đi

14 tháng 3 2017

x^2+y^2-x^2y^2-1=-1

-x^2(y^2-1)+(y^2-1)=-1 

(y^2-1)(-x^2+1)=-1 

suy ra trường hợp 1 y^2-1=1 và -x^2+1=-1 ko thỏa do nghiệm ko nguyên 

         trường hợp 2 y^2-1=-1 và -x^2+1=1 

                            y=0,x=0 

24 tháng 1 2017

f)

\(A=\sqrt{\frac{\left(x+1\right)}{x-3}}=\sqrt{1+\frac{4}{x-3}}\)

x-3={-4)=> x=-1