K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2021

ĐK: \(-7\le x\le3\)

\(\sqrt{-x^2-4x+21}< x+3\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+3>0\\-x^2-4x+21< x^2+6x+9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>-3\\2x^2+10x-12>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>-3\\\left(x+6\right)\left(x-1\right)>0\end{matrix}\right.\)

\(\Leftrightarrow x>1\)

\(\Rightarrow x\in(1;3]\)

NV
20 tháng 5 2020

ĐKXĐ: \(-2\le x\le3\)

\(\Leftrightarrow3x^3+3x^2-12x-12+x+4-3\sqrt{x+2}+5-x-3\sqrt{3-x}\ge0\)

\(\Leftrightarrow\left(x^2-x-2\right)\left(3x+6\right)+\frac{x^2-x-2}{x+4+3\sqrt{x+2}}+\frac{x^2-x-2}{5-x+3\sqrt{3-x}}\ge0\)

\(\Leftrightarrow\left(x^2-x-2\right)\left[3\left(x+2\right)+\frac{1}{x+4+3\sqrt{x+2}}+\frac{1}{5-x+3\sqrt{3-x}}\right]\ge0\)

\(\Leftrightarrow x^2-x-2\ge0\)

\(\Rightarrow\left[{}\begin{matrix}-2\le x\le-1\\2\le x\le3\end{matrix}\right.\)

NV
23 tháng 6 2020

ĐKXĐ: \(1\le x\le3\)

- Với \(1\le x< 2\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT luôn đúng

- Với \(x\ge2\) hai vế ko âm, bình phương:

\(-x^2+4x-3>x^2-4x+4\)

\(\Leftrightarrow2x^2-8x+7< 0\Rightarrow2\le x< \frac{4+\sqrt{2}}{2}\)

Vậy nghiệm của BPT là: \(1\le x< \frac{4+\sqrt{2}}{2}\)

NV
29 tháng 3 2021

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-\dfrac{9}{2}\\x\ne0\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{\left(3+\sqrt{9+2x}\right)^2.2x^2}{\left(3-\sqrt{9+2x}\right)^2\left(3+\sqrt{9+2x}\right)^2}< x+21\)

\(\Leftrightarrow\dfrac{\left(3+\sqrt{9+2x}\right)^2.2x^2}{4x^2}< x+21\)

\(\Leftrightarrow\left(3+\sqrt{9+2x}\right)^2< 2x+42\)

\(\Leftrightarrow x+9+3\sqrt{9+2x}< x+21\)

\(\Leftrightarrow\sqrt{9+2x}< 4\)

\(\Leftrightarrow9+2x< 16\Rightarrow x< \dfrac{7}{2}\)

Vậy \(\left\{{}\begin{matrix}-\dfrac{9}{2}\le x< \dfrac{7}{2}\\x\ne0\end{matrix}\right.\)

a) Ta có: \(3\left(x-2\right)-\left(x-5\right)>21\)

\(\Leftrightarrow3x-6-x+5>21\)

\(\Leftrightarrow2x-1>21\)

\(\Leftrightarrow2x>22\)

hay x>11

Vậy: S={x|x>11}

b) Ta có: \(5\left(x+1\right)-7\left(x-3\right)< 10\)

\(\Leftrightarrow5x+5-7x+21-10< 0\)

\(\Leftrightarrow-2x+16< 0\)

\(\Leftrightarrow-2x< -16\)

hay x>8

Vậy: S={x|x>8}

23 tháng 11 2019

Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH