K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2021

Dễ dàng chứng minh được:

\(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\) với \(a,b,c>0\)(1)

Dấu bằng xảy ra \(\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)

Theo đề bài, vì x, y, z > 0 nên áp dụng (1), ta có:

\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\)\(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\)(2)

Vì x y, z > 0 nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:

\(x+y\ge2\sqrt{xy}\)(3)

Chứng mih tương tự, ta được;

\(y+z\ge2\sqrt{yz}\)(4);

\(z+x\ge2\sqrt{zx}\)(5)

Từ (3), (4), (5), ta được:

\(2\left(x+y+z\right)\ge2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)

\(\Leftrightarrow x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow2\left(x+y+z\right)\ge x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

\(\Leftrightarrow\frac{1}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\)\(\frac{1}{2\left(x+y+z\right)}\)

\(\Leftrightarrow\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\frac{x+y+z}{2}\)

7 tháng 3 2021

Mà theo đề bài, \(x+y+z\ge3\) nên:

\(\frac{x+y+z}{2}\ge\frac{3}{2}\)

Suy ra \(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\ge\frac{3}{2}\left(6\right)\)

Từ (2) và (6), ta được:

\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)(điều phải chứng minh)

Dấu bằng xảy ra

\(\Leftrightarrow\hept{\begin{cases}x=y=z\\x+y+z=3\end{cases}\Leftrightarrow x=y=z=1}\)

Vậy nếu x, y, z > 0 và \(x+y+z\ge3\)thì \(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{zx}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)

AH
Akai Haruma
Giáo viên
26 tháng 12 2017

Lời giải:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\text{VT}=\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}=\frac{x^2}{\sqrt[3]{x^3yz}}+\frac{y^2}{\sqrt[3]{y^3xz}}+\frac{z^2}{\sqrt[3]{z^3xy}}\)

\(\geq \frac{(x+y+z)^2}{\sqrt[3]{x^3yz}+\sqrt[3]{y^3xz}+\sqrt[3]{z^3xy}}\) (1)

Áp dụng BĐT Am-Gm:

\(\sqrt[3]{x^3yz}\leq \frac{x^2+xyz+1}{3}; \sqrt[3]{y^3xz}\leq \frac{y^2+xyz+1}{3}; \sqrt[3]{z^3xy}\leq \frac{z^2+xyz+1}{3}\)

\(\Rightarrow \sqrt[3]{x^3yz}+\sqrt[3]{y^3xz}+\sqrt[3]{z^3xy}\leq \frac{x^2+y^2+z^2+3xyz+3}{3}=2+xyz\)

Theo BĐT AM-GM:

\(x^2+y^2+z^2\geq 3\sqrt[3]{x^2y^2z^2}\Leftrightarrow 3\sqrt[3]{x^2y^2z^2}\leq 3\Leftrightarrow xyz\leq 1\)

Do đó: \(\sqrt[3]{x^3yz}+\sqrt[3]{y^3xz}+\sqrt[3]{z^3xy}\leq 3\) (2)

Từ (1),(2) và sử dụng hệ quả \(x^2+y^2+z^2\geq xy+yz+xz\) :

\(\Rightarrow \text{VT}\geq \frac{(x+y+z)^2}{3}=\frac{x^2+y^2+z^2+2(xy+yz+xz)}{3}\geq \frac{3(xy+yz+xz)}{3}=xy+yz+xz\)

Ta có đpcm

Dấu bằng xảy ra khi \(x=y=z=1\)

27 tháng 12 2017

Áp dụng BĐT AM-GM ta có:

\(VT\ge\dfrac{x}{\dfrac{y+z+1}{3}}+\dfrac{y}{\dfrac{x+z+1}{3}}+\dfrac{z}{\dfrac{x+y+1}{3}}\)

Cần chứng minh \(\dfrac{9x}{y+z+1}+\dfrac{9y}{x+z+1}+\dfrac{9z}{x+y+1}\ge3\left(xy+yz+xz\right)\)

Cauchy-Schwarz: \(VT=\dfrac{9x^2}{xy+xz+x}+\dfrac{9y^2}{xy+yz+y}+\dfrac{9z^2}{xz+yz+z}\)

\(\ge\dfrac{9\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\ge\left(x+y+z\right)^2\)

BĐT cuối đúng vì dễ thấy: \(\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)

1 tháng 1 2020

Áp dụng BĐT Cauchy - Schwarz ta có :

\(VT=\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}=\frac{x^2}{\sqrt[3]{x^3yz}}+\frac{y^2}{\sqrt[3]{y^3xz}}+\frac{z^2}{\sqrt[3]{z^3xy}}\)

\(\ge\frac{\left(x+y+z\right)^2}{\sqrt[3]{x^3yz}+\sqrt[3]{y^3xz}+\sqrt[3]{z^3xy}}\left(1\right)\)

Áp dụng BĐT : AM - GM :

\(\sqrt[3]{x^3yz}\le\frac{x^2+xyz+1}{3};\sqrt[3]{y^3xz}\le\frac{y^2+xyz+1}{3};\sqrt[3]{z^3xy}\le\frac{z^2+xyz+1}{3}\)

\(\Rightarrow\sqrt[3]{x^3yz}+\sqrt[3]{y^3xz}+\sqrt[3]{z^3xy}\le\frac{x^2+y^2+z^2+3xyz+3}{3}=2+xyz\)

Theo BĐT AM - GM :

\(x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}\Leftrightarrow3\sqrt[3]{x^2y^2z^2}\le3\Leftrightarrow xyz\le1\)

Do đó : \(\sqrt[3]{x^3yz}+\sqrt[3]{y^3xz}+\sqrt[3]{z^3xy}\le3\left(2\right)\)

Tư (1) , (2) và sử dụng hệ quả :
\(x^2+y^2+z^2\ge xy+yz+zx:\)

\(\Rightarrow VT\ge\frac{\left(x+y+z\right)^2}{3}=\frac{x^2+y^2+z^2+2\left(xy+yz+xz\right)}{3}\ge\frac{3\left(xy+yz+xz\right)}{3}\)\(=xy+yz+xz\)

Ta có đpcm 

Dấu " = " xảy ra khi \(x=y=z=1\)

Chúc bạn học tốt !!!

26 tháng 2 2018

\(VT=\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}\)

\(\ge\frac{3x}{y+z+1}+\frac{3y}{x+z+1}+\frac{3z}{x+y+1}\)

\(=\frac{3x^2}{xy+xz+x}+\frac{3y^2}{xy+yz+y}+\frac{3z^2}{xz+yz+z}\)

\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\)

\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x^2+y^2+z^2}\)

\(\ge\frac{3\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=3=x^2+y^2+z^2\ge xy+yz+xz=VP\)

Dấu "=" <=> x=y=z=1

5 tháng 2 2020

Áp dụng BĐT Cô-si dạng Engel,ta có :

\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}\)

Mà \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le x+y+z\)

\(\Rightarrow\)\(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\ge\frac{3}{2}\)

Dấu "=" xảy ra khi x = y = z = \(\frac{3}{2}\)

5 tháng 2 2020

nhầm sửa x = y = z = 1 nha

9 tháng 2 2017

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{yz}+\sqrt{xz}+\sqrt{xy}}\)

Xét \(\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{yz}+\sqrt{xz}+\sqrt{xy}}\)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\left\{\begin{matrix}\sqrt{yz}\le\frac{y+z}{2}\\\sqrt{xz}\le\frac{x+z}{2}\\\sqrt{xy}\le\frac{x+y}{2}\end{matrix}\right.\)

\(\Rightarrow\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\le\frac{y+z}{2}+\frac{x+z}{2}+\frac{x+y}{2}\)

\(\Rightarrow\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\le\frac{2\left(x+y+z\right)}{2}\)

\(\Rightarrow\sqrt{yz}+\sqrt{xz}+\sqrt{xy}\le x+y+z\)

\(\Rightarrow x+y+z+\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le2\left(x+y+z\right)\)

\(\Rightarrow\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{xz}+\sqrt{yz}}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)

Ta có: \(x+y+z\ge3\)

\(\Rightarrow\frac{x+y+z}{2}\ge\frac{3}{2}\)

\(\Rightarrow\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{xy}+\sqrt{xz}+\sqrt{yz}}\ge\frac{3}{2}\)

\(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{\left(x+y+z\right)^2}{x+y+z+\sqrt{yz}+\sqrt{xz}+\sqrt{xy}}\)

\(\Rightarrow\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\) ( đpcm )

30 tháng 9 2017

Áp dụng BĐT AM-GM:

\(VT=\sum\dfrac{\sqrt{\left(x+y\right)^2-xy}}{4yz+1}\ge\sum\dfrac{\sqrt{\left(x+y\right)^2-\dfrac{1}{4}\left(x+y\right)^2}}{\left(y+z\right)^2+1}=\sum\dfrac{\dfrac{\sqrt{3}}{2}\left(x+y\right)}{\left(y+z\right)^2+1}\)

Set \(\left\{{}\begin{matrix}x+y=a\\y+z=b\\z+x=c\end{matrix}\right.\)thì giả thiết trở thành \(a+b+c=3\) và cần chứng minh \(\dfrac{\sqrt{3}}{2}.\sum\dfrac{a}{b^2+1}\ge\dfrac{3\sqrt{3}}{4}\)

\(\Leftrightarrow\sum\dfrac{a}{b^2+1}\ge\dfrac{3}{2}\)( đến đây quen thuộc rồi)

Ta có:\(\sum\dfrac{a}{b^2+1}=\sum a-\sum\dfrac{ab^2}{b^2+1}\ge3-\sum\dfrac{ab^2}{2b}\)(AM-GM)

\(VT\ge3-\sum\dfrac{ab}{2}\ge3-\dfrac{\dfrac{1}{3}\left(a+b+c\right)^2}{2}=\dfrac{3}{2}\)( AM-GM)

Vậy ta có đpcm.Dấu = xảy ra khi a=b=c=1 hay \(x=y=z=\dfrac{1}{2}\)

30 tháng 9 2017

cảm ơn bạn nhé

9 tháng 8 2020

áp dụng bđt Min-cốp-xki ta có \(\sqrt{x^2+xy+y^2}+\sqrt{x^2+xz+z^2}=\sqrt{\left(x^2+xy+\frac{y^2}{4}\right)+\frac{3y^2}{4}}+\sqrt{\left(x^2+xz+\frac{z^2}{4}\right)+\frac{3z^2}{4}}\)\(=\sqrt{\left(x+\frac{y}{2}\right)^2+\left(\frac{\sqrt{3}y}{2}\right)^2}+\sqrt{\left(-x-\frac{z}{2}\right)^2+\left(\frac{\sqrt{3}z}{2}\right)^2}\)\(\ge\sqrt{\left(x+\frac{y}{2}-x-\frac{z}{2}\right)^2+\left(\frac{\sqrt{3}y}{2}+\frac{\sqrt{3}z}{2}\right)^2}=\sqrt{\frac{y^2}{4}-\frac{yz}{2}+\frac{z^2}{4}+\frac{3y^2}{4}+\frac{3yz}{2}+\frac{3z^2}{4}}\)

\(=\sqrt{y^2+yz+z^2}\)

AH
Akai Haruma
Giáo viên
16 tháng 7 2019

Lời giải:

Ta thấy:

\(x^2+xy+y^2=\frac{3}{4}(x^2+2xy+y^2)+\frac{1}{4}(x^2-2xy+y^2)=\frac{3}{4}(x+y)^2+\frac{1}{4}(x-y)^2\)

\(\geq \frac{3}{4}(x+y)^2\) với mọi $x,y>0$
\(\Rightarrow \sqrt{x^2+xy+y^2}\geq \frac{\sqrt{3}}{2}(x+y)\)

Hoàn toàn tương tự:

\(\sqrt{y^2+yz+z^2}\geq \frac{\sqrt{3}}{2}(y+z); \sqrt{z^2+zx+x^2}\geq \frac{\sqrt{3}}{2}(x+z)\)

Cộng theo vế các BĐT trên và rút gọn:

\(\Rightarrow \sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+xz+x^2}\geq \sqrt{3}(x+y+z)\)

Ta có đpcm.

Dấu "=" xảy ra khi $x=y=z$

23 tháng 5 2020

Với x, y, z dương, ta cần chứng minh: \(\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}\)\(\ge\sqrt{3}\left(x+y+z\right)\)(1)

Phân tích: Trong BĐT (1), các biến được hoán vị vòng quanh và đẳng thức xảy ra khi x = y = z. Ta chọn được các số n, m để có bất đẳng thức \(\sqrt{x^2+xy+y^2}\ge nx+my\)(2)

Tương tự rồi cộng theo vế, ta được: \(\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}\)\(\ge\left(m+n\right)\left(x+y+z\right)\)

Nhìn vào BĐT cần chứng minh ta thấy nếu tìm được cặp (n,m) thì lời giải thành công. Thế \(m=\sqrt{3}-n\)vào (2), ta có:

\(\sqrt{x^2+xy+y^2}\ge nx+\left(\sqrt{3}-n\right)y\)\(\Leftrightarrow\sqrt{\left(\frac{x}{y}\right)^2+\left(\frac{x}{y}\right)+1}\ge n.\left(\frac{x}{y}\right)+\left(\sqrt{3}-n\right)\)(3)

Đặt \(t=\frac{x}{y}\)BĐT (3) trở thành \(\sqrt{t^2+t+1}\ge nt+\sqrt{3}-n\)(4)

Do đẳng thức xảy ra khi x = y nên t = 1 ta phân tích (4) về nhân tử (t - 1)

Ta có: \(\left(4\right)\Leftrightarrow\left(\sqrt{t^2+t+1}-\sqrt{3}\right)-n\left(t-1\right)\ge0\)\(\Leftrightarrow\left(t-1\right)\left[\frac{t+2}{\sqrt{t^2+1+1}+\sqrt{3}}-n\right]\ge0\)

\(\Leftrightarrow n\le\frac{t+2}{\sqrt{t^2+t+1}+\sqrt{3}}\). Đồng nhất t = 1, ta được: \(n=\frac{\sqrt{3}}{2}\Rightarrow m=\frac{\sqrt{3}}{2}\)

Lúc đó ta có BĐT phụ: \(\sqrt{x^2+xy+y^2}\ge\frac{\sqrt{3}x+\sqrt{3}y}{2}\)

Giải: Xét BĐT phụ \(\sqrt{x^2+xy+y^2}\ge\frac{\sqrt{3}x+\sqrt{3}y}{2}\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(x-y\right)^2\ge0\)*đúng*

Tương tự cho các BĐT còn lại, ta được: \(\sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+zx+x^2}\)

\(\ge\frac{\sqrt{3}\left(x+y+z\right)+\sqrt{3}\left(x+y+z\right)}{2}=\sqrt{3}\left(x+y+z\right)\)

Đẳng thức xảy ra khi x = y = z.

23 tháng 5 2020

Thật ra bài này không cần giãi kĩ như mình đây, bước đầu là bước nháp của mình, ghi luôn để các bạn hiểu tại sao lại có BĐT phụ thế kia

Nhưng bạn có thể làm 1 cách dễ hơn mà ko cần phải bỏ nhiều công sức nháp

Có: \(\sqrt{x^2+xy+y^2}=\sqrt{\left(x+y\right)^2-xy}\)

\(\ge\sqrt{\left(x+y\right)^2-\frac{\left(x+y\right)^2}{4}}=\frac{\sqrt{3}\left(x+y\right)}{2}\)

Đến đây tương tự rồi cộng lại, Done.