GIẢI PT SAU:
\(\sqrt{5x+10}=8-x\)
\(\sqrt{4x^2+x-12}=3x-5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
ĐKXĐ: \(-1\le x\le1\)
Đặt \(\sqrt{1-x^2}=t\Rightarrow0\le t\le1\)
\(x^2=1-t^2\Rightarrow x^4=t^4-2t^2+1\)
Pt trở thành:
\(729\left(t^4-2t^2+1\right)+8t=36\)
\(\Leftrightarrow729t^4-1458t^2+8t+693=0\)
\(\Leftrightarrow\left(9t^2+2t-9\right)\left(81t^2-18t-77\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}9t^2+2t-9=0\\81t^2-18t-77=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{\sqrt{82}-1}{9}\\t=\dfrac{1+\sqrt{78}}{9}\end{matrix}\right.\)
\(\Rightarrow x=\pm\sqrt{1-t^2}=...\)
b.
ĐKXĐ: ...
\(-3\left(10+4x-x^2\right)-5\sqrt{10+4x-x^2}+42=0\)
Đặt \(\sqrt{10+4x-x^2}=t\ge0\)
\(\Rightarrow-3t^2-5t+42=0\)
\(\Rightarrow\left[{}\begin{matrix}t=3\\t=-\dfrac{14}{3}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{10+4x-x^2}=3\)
\(\Leftrightarrow x^2-4x-1=0\)
\(\Leftrightarrow x=...\)
Đk: \(x\ge6\)
pt\(\Leftrightarrow\sqrt{5x^2+4x}=5\sqrt{x}+\sqrt{x^2-3x-18}\)
\(\Leftrightarrow5x^2+4x=25x+x^2-3x-18+10\sqrt{x\left(x^2-3x-18\right)}\)
\(\Leftrightarrow2x^2-9x+9=5\sqrt{x^3-3x^2-18x}\)
\(\Leftrightarrow4x^4+81x^2+81-36x^3-162x+36x^2=25\left(x^3-3x^2-18x\right)\)
\(\Leftrightarrow4x^4-61x^3+192x^2+288x+81=0\)
\(\Leftrightarrow\left(x-9\right)\left(4x+3\right)\left(x^2-7x-3\right)=0\)
\(\Leftrightarrow\left(4x+3\right)\left(x-9\right)\left(x-\dfrac{7+\sqrt{61}}{2}\right)\left(x-\dfrac{7-\sqrt{61}}{2}\right)=0\)
mà x \(\ge6\) \(\Rightarrow\left\{{}\begin{matrix}4x+3>0\\x-\dfrac{7-\sqrt{61}}{2}>0\end{matrix}\right.\)
\(\Rightarrow\left(x-9\right)\left(x-\dfrac{7+\sqrt{61}}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=\dfrac{7+\sqrt{61}}{2}\end{matrix}\right.\)
Vậy.....
Sau khi bình phương lần thứ nhất, đến:
\(2x^2-9x+9=5\sqrt{x^3-3x^2-18}\)
Thay vì bình phương tiếp lên bậc 4 rất cồng kềnh, em có thể đặt ẩn phụ:
\(\Leftrightarrow2x^2-9x+9=5\sqrt{\left(x+3\right)\left(x^2-6x\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-6x}=a\\\sqrt{x+3}=b\end{matrix}\right.\) ta được:
\(2a^2+3b^2=5ab\)
\(\Leftrightarrow\left(a-b\right)\left(2a-3b\right)=0\)
Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)
\(ĐK:x\ge3\)
\(\Leftrightarrow5x^2+4=x^2+22x-18+10\sqrt{x.x-6.x+3}\)
\(\Leftrightarrow4x^2-18x+18=10\sqrt{x+3.x^2-6x}=0\)
\(\Leftrightarrow4.x^2-6x+6.x+3-10\sqrt{x+3.x^2-6x}=0\)
\(\Leftrightarrow2\sqrt{x^2-6x}-3\sqrt{x+3}.\sqrt{x^2-6x}-\sqrt{x+3}=0\)
a/ \(\Leftrightarrow x^2+5x-2-2\sqrt[3]{x^2+5x-2}+4=0\)
Đặt \(\sqrt[3]{x^2+5x-2}=a\)
\(a^3-2a+4=0\)
\(\Leftrightarrow\left(a+2\right)\left(a^2-2a+2\right)=0\Rightarrow a=-2\)
\(\Rightarrow\sqrt[3]{x^2+5x-2}=-2\Rightarrow x^2+5x+6=0\Rightarrow...\)
b/ ĐKXĐ:...
\(\Leftrightarrow-3\left(-x^2+4x+10\right)-5\sqrt{-x^2+4x+10}+42=0\)
Đặt \(\sqrt{-x^2+4x+10}=a\ge0\)
\(-3a^2-5a+42=0\Rightarrow\left[{}\begin{matrix}a=3\\a=-\frac{14}{3}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2+4x+10}=3\Rightarrow x^2-4x-1=0\Rightarrow...\)
c/ ĐKXĐ: ...
\(\Leftrightarrow x^2+3x+3\sqrt{x^2+3x}-10=0\)
Đặt \(\sqrt{x^2+3x}=a\ge0\)
\(a^2+3a-10=0\Rightarrow\left[{}\begin{matrix}a=2\\a=-5\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2+3x}=2\Rightarrow x^2+3x-4=0\)
d/ ĐKXĐ: \(-1\le x\le2\)
\(\Leftrightarrow\sqrt{3-x+x^2}=1+\sqrt{2+x-x^2}\)
\(\Leftrightarrow3-x+x^2=3+x-x^2+2\sqrt{2+x-x^2}\)
\(\Leftrightarrow2+x-x^2+\sqrt{2+x-x^2}-2=0\)
Đặt \(\sqrt{2+x-x^2}=a\ge0\)
\(a^2+a-2=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-2\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2+x-x^2}=1\Leftrightarrow x^2-x-1=0\)
e/ \(\Leftrightarrow\sqrt{x^2-3x+3}-1+\sqrt{x^2-3x+6}-2=0\)
\(\Leftrightarrow\frac{x^2-3x+2}{\sqrt{x^2-3x+3}+1}+\frac{x^2-3x+2}{\sqrt{x^2-3x+6}+2}=0\)
\(\Leftrightarrow\left(x^2-3x+2\right)\left(\frac{1}{\sqrt{x^2-3x+3}+1}+\frac{1}{\sqrt{x^2-3x+6}+2}\right)=0\)
\(\Leftrightarrow x^2-3x+2=0\)
a, ĐKXĐ:...
\(\sqrt{5x+10}=8-x\\ \Leftrightarrow5x+10=64-16x+x^2\\ \Leftrightarrow x^2-21x+54=0\)
.....
b, ĐKXĐ:...
\(\sqrt{4x^2+x-12}=3x-5\\ \Leftrightarrow4x^2+x-12=9x^2-30x+25\\ \Leftrightarrow5x^2-31x+37=0\)
.....
Để bình 8 - x lên thì cần phải có ĐK x ≤ 8 nữa nhé! Đi thi ko có đk coi như bỏ :)))