cho tgABC có pt cạnh AB là : 5x - 3y + 2 =0 và có 2 đường cao :
AA' : 4x - 3y + 1= 0
BB' : 7x + 2y -22 =0
lập phương trình 2 cạnh còn lại và dường cao CC' của tgABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C d2 d1 H
A = AB giao d1=> Tọa độ A là nghiệm của hệ : \(\begin{cases}5x-3y+2=0\\4x-3y+1=0\end{cases}\)<=> \(\begin{cases}x+1=0\\4x-3y+1=0\end{cases}\)<=> \(\begin{cases}x=-1\\y=\frac{1+4x}{3}\end{cases}\)<=> \(\begin{cases}x=-1\\y=-1\end{cases}\)=> A (-1; -1)
Đường thẳng d2 có vtpt là \(\vec{n_2}\left(7;2\right)\) chính là vtcp của đường thẳng AC , điểm A thuộc AC
=> Phương trình đường thẳng AC có dạng: \(\begin{cases}x=-1+7t\\y=-1+2t\end{cases}\)(t \(\in\) R)
Gọi H = d1 \(\cap\) d2 => tọa độ H là nghiệm của pt: \(\begin{cases}7x+2y-22=0\\4x-3y+1=0\end{cases}\) <=> \(\begin{cases}x=\frac{64}{29}\\y=\frac{95}{29}\end{cases}\)=> H (\(\frac{64}{29};\frac{95}{29}\))
Đường cao CH đi qua H và có vtcp chính là vtpt của AB là \(\vec{n}\) (5; -3)
=> Phương trình CH có dạng : \(\begin{cases}x=\frac{64}{29}+5t\\y=\frac{95}{29}-3t\end{cases}\)
B = AB \(\cap\) d2 => Tọa độ B là nghiệm của hệ : \(\begin{cases}5x-3y+2=0\\7x+2y-22=0\end{cases}\) <=> \(\begin{cases}x=2\\y=4\end{cases}\)=> B (2;4)
Đường thẳng BC đi qua B , có vtcp chính là vtpt của d1 là \(\vec{n_1}\)(4;-3)
=> phương trình đường thẳng BC là: \(\begin{cases}x=2+4t\\y=4-3t\end{cases}\)
4 câu làm tương tự nhau, nhưng câu a chắc bạn ghi nhầm đề (hoặc đề sai). Do \(AB\perp CC'\) nhưng \(4.2+1.2\ne0\) là hoàn toàn vô lý
Mình làm câu b, 2 câu còn lại bạn làm tương tự
Gọi H là trực tâm tam giác \(\Rightarrow\) H là giao điểm BB' và CC'
Tọa độ H là nghiệm \(\left\{{}\begin{matrix}4x-3y+1=0\\7x+2y-22=0\end{matrix}\right.\) \(\Rightarrow H\left(\frac{64}{29};\frac{95}{29}\right)\)
B là giao điểm BC và BB' nên tọa độ B là nghiệm:
\(\left\{{}\begin{matrix}5x-3y+2=0\\4x-3y+1=0\end{matrix}\right.\) \(\Rightarrow B\left(-1;-1\right)\)
C là giao điểm BC và CC' nên tọa độ C là nghiệm:
\(\left\{{}\begin{matrix}5x-3y+2=0\\7x+2y-22=0\end{matrix}\right.\) \(\Rightarrow C\left(2;4\right)\)
Đường AA' đi qua H và vuông góc BC nên nhận \(\left(3;5\right)\) là 1 vtpt
Phương trình AA':
\(3\left(x-\frac{64}{29}\right)+5\left(x-\frac{95}{29}\right)=0\Leftrightarrow3x+5y-23=0\)
Đường thẳng AB qua B và vuông góc CC' nên nhận \(\left(2;-7\right)\) là 1 vtpt
Phương trình AB:
\(2\left(x+1\right)-7\left(y+1\right)=0\Leftrightarrow2x-7y-5=0\)
Đường thẳng AC qua C và vuông góc BB' nên nhận \(\left(3;4\right)\) là 1 vtpt
Phương trình AC:
\(3\left(x-2\right)+4\left(y-4\right)=0\Leftrightarrow3x+4y-22=0\)
Ta có, AB và AC cắt nhau tại A nên tọa độ đỉnh A là nghiệm của hệ phương trình :
x − 3 y − 1 = 0 5 x − 2 y + 1 = 0 ⇒ A − 5 13 ; − 6 13
Đường thẳng BC có VTPT n B C → ( 1 ; 3 ) .
Vì A H ⊥ B C nên đường thẳng AH nhận vecto n B C → ( 1 ; 3 ) làm VTCP, một VTPT của AH là: n A H → ( 3 ; − 1 )
Phương trình đường cao AH của tam giác là:
3 x + 5 13 − y + 6 13 = 0 ⇔ 39 x − 13 y + 9 = 0
ĐÁP ÁN B
Gọi M(x;y) trực tâm của tam giác ABC
Tọa độ điểm M là nghiệm của hệ:
\(\left\{{}\begin{matrix}4x-3y+1=0\\7x+2y-22=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{64}{29}\\y=\frac{95}{29}\end{matrix}\right.\)
\(M\left(\frac{64}{29};\frac{95}{29}\right)\)
CM là đường thẳng đi qua M và nhận AB là vtpt
=> CM: 3x + 5y - 23 =0
Tọa độ điểm A là nghiệm của hệ\(\left\{{}\begin{matrix}5x-3y+1=0\\4x-3y+1-0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\frac{1}{3}\end{matrix}\right.\)
=> A(0; 1/3)
=> AC: 2x - 7y + 7/3 = 0
tương tự bạn tìm tọa độ điểm B hoặc C => pt cạnh BC