K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2021

Không hiểu sao cái dòng đó lại nhảy như thế. Mình đánh lại.

Giả thiết tương đương với:

\((x+y+1)(x^2+y^2+1-xy-x-y)=p\).

Do x + y + 1 > 1 và p là số nguyên tố nên x + y + 1 = p và \(x^2+y^2+1-x-y-xy=1\Leftrightarrow\left(x+y\right)^2-\left(x+y\right)=3xy\le\dfrac{3}{4}\left(x+y\right)^2\Rightarrow x+y\le4\Rightarrow p\le5\).

Ta thấy 5 là số nguyên tố. Đẳng thức xảy ra khi x = y = 2.

Vậy max p = 5 khi x = y = 2.

7 tháng 5 2020

\(x^3+y^3-3xy=p-1\)

\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)-3xy+1=p\)

\(\Leftrightarrow\left(x+y+1\right)\left[\left(x+y\right)^2-\left(x+y\right)+1-3xy\right]=p\)

\(\Leftrightarrow\hept{\begin{cases}x+y+1=p\\\left(x+y\right)^2-\left(x+y\right)+1-3xy=1\end{cases}}\)( để ý rằng x+y+1 > 1 và p  là số nguyên tố )

\(\Leftrightarrow\hept{\begin{cases}x+y+1=p\\\left(x+y\right)^2-\left(x+y\right)=3xy\end{cases}}\)

Mà ta có đánh giá quen thuộc sau:

\(4xy\le\left(x+y\right)^2\Rightarrow3xy=\left(x+y\right)^2-\left(x+y\right)\le\frac{3}{4}\left(x+y\right)^2\)

\(\Leftrightarrow\left(x+y\right)^2-4\left(x+y\right)\le0\Rightarrow0\le x+y\le4\)

Mặt khác \(x+y=p-1\Rightarrow p-1\le4\Leftrightarrow p\le5\)

Vậy pmax=5 tại x=y=2

Theo đề: \(p=x^3+y^3-3xy+1=\left(x+y\right)^3+1-3xy\left(x+y\right)-3xy\)

\(=\left(x+y+1\right)\left[\left(x+y\right)^2-\left(x+y\right)+1\right]-3xy\left(x+y+1\right)\)

\(=\left(x+y+1\right)\left(x^2+y^2-x-y-xy+1\right)\)

Vậy \(\left(x+y+1\right)\)và \(\left(x^2+y^2-x-y-xy+1\right)\)là các ước của p, mà p là số nguyên tố nên 1 trong 2 ước trên phải bằng 1 và ước còn lại bằng chính p

+) \(\hept{\begin{cases}x+y+1=1\Leftrightarrow x=-y\\x^2+y^2-x-y-xy+1=p\end{cases}}\)---> Loại, vì x,y nguyên dương nên x không thể bằng -y.

+) \(\hept{\begin{cases}x+y+1=p\Leftrightarrow x+y=p-1\\x^2+y^2-x-y-xy+1=1\end{cases}}\)---> Xét vế dưới:

\(x^2+y^2-x-y-xy=0\)---> Áp dụng 1 số BĐT đơn giản:

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)và \(xy\le\frac{\left(x+y\right)^2}{4}\Rightarrow-xy\ge-\frac{\left(x+y\right)^2}{4}\)

Suy ra: \(x^2+y^2-x-y-xy\ge\frac{\left(x+y\right)^2}{2}-\left(x+y\right)-\frac{\left(x+y\right)^2}{4}=\frac{\left(x+y\right)^2}{4}-\left(x+y\right)\)

\(\Rightarrow0\ge\frac{\left(x+y\right)^2}{4}-\left(x+y\right)\Leftrightarrow0\le x+y\le4\Rightarrow0\le p-1\le4\Leftrightarrow1\le p\le5\)

Vậy số nguyên tố p lớn nhất thỏa mãn đề bài là p = 5

Khi đó x = y = 2.

1 tháng 5 2020

Ta có:

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\Leftrightarrow\left(a+b\right)c=ab\Leftrightarrow ab-bc-ab=0\)

Hay \(ab-bc-ab+c^2=c^2\Leftrightarrow\left(b-c\right)\left(a-c\right)=c^2\)

Nếu \(\left(b-c;a-c\right)=d\ne1\Rightarrow c^2=d^2\left(loai\right)\)

Vậy \(\left(b-c;a-c\right)=1\Rightarrow c-b;c-a\) là 2 số chính phương

Đặt \(b-c=n^2;a-c=m^2\)

\(\Rightarrow a+b=b-c+a-c+2c=m^2+n^2+2mn=\left(m+n\right)^2\) là số chính phương

26 tháng 7 2024

cho mình hỏi tại sao ở TH1: c^2=d^2 lại loại vậy ạ

 

25 tháng 9 2018

Nếu x = 1 => y = 1 thỏa 
Nếu x ≥ 2 thì đặt (x³ + x):(3xy - 1) = m ∈ N (vì x, y nguyên dương nên 3xy - 1 nguyên dương) 
=> x³ + x = m(3xy - 1) => x² + 1 = 3my - m/x (1) => m/x = 3my - x² - 1 = p ∈ N => m = px thay vào (1) có: 
x² + 1 = 3pxy - p (2) => x + 1/x = 3py - p/x => (p + 1)/x = 3py - x = q ∈ N 
=> p + 1 = qx => p = qx - 1 thay vào (2) có: 
x² + 1 = 3(qx - 1)xy - (qx - 1) = 3qx²y - 3xy - qx + 1 
=> x + q = 3y(qx - 1) ≥ 3(qx - 1) ( vì y ≥ 1) 
=> 3qx - x - q ≤ 3 <=> (3q - 1)(x - 1) ≤ 4 - 2q ≤ 2 (vì q ≥ 1) 
Mà 3q - 1 ≥ 2 và x - 1 ≥ 1 => 3q - 1 = 2 và x - 1 = 1 => x = 2 
thay x = 2 vào biểu thức ban đầu có 10/(6y - 1) ∈ N => y = 1 
Đs: (x; y) = (1; 1); (2; 1)