Tìm x thoả mãn: \(x^4-20x^2+64=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Đặt $20x=25y=30z=t$ với $t$ là số tự nhiên khác 0.
$\Rightarrow x=\frac{t}{20}; y=\frac{t}{25}; z=\frac{t}{30}$
Để $x,y,z$ là stn thì $t\vdots 20,25,30$
$\Rightarrow t=BC(20,25,30)$
Để $x,y,z$ nhỏ nhất và khác 0 thì $t$ nhỏ nhất và khác 0
$\Rightarrow t=BCNN(20,25,30)$ sao cho $t\neq 0$
$\Rightarrow t=300$
$\Rightarrow x=\frac{t}{20}=\frac{300}{20}=15, y=\frac{t}{25}=\frac{300}{25}=12; z=\frac{300}{30}=10$
Bài 2:
$2n+1\vdots n-1$
$\Rightarrow 2(n-1)+3\vdots n-1$
$\Rightarrow 3\vdots n-1$
$\Rightarrow n-1\in \left\{1; -1; 3;-3\right\}$
$\Rightarrow n\in \left\{3; 0; 4; -2\right\}$
\(x^2-2xy+2y^2+5z^2+4yz-4z+4=0\)
\(\Leftrightarrow x^2-2xy+y^2+y^2+4yz+4z^2+z^2-4z+4=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y+2z\right)^2+\left(z-2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-y=0\\y+2z=0\\z-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-4\\y=-4\\z=2\end{cases}}\)
\(x\ge0\)
\(\left(\sqrt{x}-4\right)\left(|x+2|-1\right)\left(x^2-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-4=0\Rightarrow x=16\left(tm\right)\\|x+2|-1=0\Leftrightarrow\left[{}\begin{matrix}x+2=1\Rightarrow x=-1\\x+2=-1\Rightarrow x=-3\end{matrix}\right.\\x^2-3=0\Rightarrow x=\pm\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left(x^4-20x^2+100\right)-36=0\)
\(\Leftrightarrow\left(x^2-10\right)^2=36\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-10=6\\x^2-10=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=16\\x^2=4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\pm4\\x=\pm2\end{matrix}\right.\)
\(x^4-20x^2+64=0\)
Đặt \(t=x^2\)
\(PT\Leftrightarrow t^2-20t+64=0\\ \Leftrightarrow t^2-16t-4t+64=0\\ \Leftrightarrow t\left(t-16\right)-4\left(t-16\right)=0\\ \Leftrightarrow\left(t-16\right)\left(t-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}t-16=0\\t-4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}t=16\\t=4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2=16\\x^2=4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\pm\sqrt{16}\\x\pm\sqrt{4}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\pm4\\x=\pm2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\\x=2\\x=-2\end{matrix}\right.\\ Vậyx\in\left\{4;-4;2;-2\right\}\)