Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác AMND có góc \(A=D=M=90^0\), do đó AMND là hình chữ nhật.
do AMND là hình chữ nhật nên \(AM=ND=NC\) mà AM//NC
do đó AMCN là hình bình hành
do đó AC cắt MN tại trung điểm của mỗi đường, do đó ta có đpcm
a: Xét tứ giác AMND có
\(\widehat{ANM}=\widehat{MAD}=\widehat{ADN}=90^0\)
=>AMND là hình chữ nhật
b: AMND là hình chữ nhật
=>AM=ND
mà \(AM=\dfrac{AB}{2}\) và AB=CD
nên DN=DC/2
=>N là trung điểm của CD
AM=MB=AB/2
CN=ND=CD/2
mà AB=CD
nên AM=MB=CN=ND
Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
=>AC cắt MN tại trung điểm của mỗi đường
mà O là trung điểm của MN
nên O là trung điểm của AC
a: Xét tứ giác AMND có
\(\widehat{MND}=\widehat{ADN}=\widehat{DAM}=90^0\)
=>AMND là hình chữ nhật
b: AMND là hình chữ nhật
=>AM=ND
mà \(AM=\dfrac{AB}{2}\)
nên \(ND=\dfrac{AB}{2}\)
mà AB=CD(ABCD là hình chữ nhật)
nên \(ND=\dfrac{CD}{2}\)
=>N là trung điểm của CD
=>NC=ND
AM=ND
ND=NC
Do đó: AM=NC
Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
=>AC cắt MN tại trung điểm của mỗi đường
mà O là trung điểm của MN
nên O là trung điểm của AC
a: Xét tứ giác AMND có
\(\widehat{MAD}=\widehat{ADN}=\widehat{MND}=90^0\)
nên AMND là hình chữ nhật
Ban tu ve hinh nha
a) Xet \(\Delta BHC\perp.tai.H\) co
\(\hept{\begin{cases}K.la.trung.diem.BH\\N.la.trung.diem.HC\end{cases}\Rightarrow KN.la.duong.trung.binh}\)
=> KN // BC va KN=1/2 BC
Xet hinh chu nhat ABCD co BC//,=AD lai co M la trung diem AD => \(AM=\frac{1}{2}AD=\frac{1}{2}BC=KN\) (1)
ma \(\hept{\begin{cases}M\in AD\\AD//BC\\KN//BC\end{cases}\Rightarrow AM//KN}\) (2)
Tu (1) va (2) suy ra AMNK la hinh binh hanh
b) theo phan a ta co \(AK//MN\) (3)
co \(\hept{\begin{cases}KN//BC\left(cmt\right)\\BC\perp AB\left(ABCD.la.hinh.chu.nhat\right)\end{cases}=>KN\perp AB\left(quan.he.tu.vuong.goc.den.song.song\right)}\)
Xet \(\Delta ABN\) co \(\hept{\begin{cases}BH\perp AN\left(gt\right)\\KN\perp AB\left(cmt\right)\end{cases}\Rightarrow K.la.truc}.tam.\Delta ABN\)
Suy ra \(AK\perp BN\) (3)
Tu (3) va (4) ta co \(MN\perp BN\) DPCM
Chuc ban hoc tot
a: Xét tứ giác ADBK có
M là trung điểm chung của AB và DK
=>ADBK là hình bình hành
=>AK=DB
mà DB=AC(ABCD là hình chữ nhật)
nên AK=AC
=>ΔAKC cân tại A
b: Xét ΔIAM có IE là phân giác
nên \(\dfrac{ME}{EA}=\dfrac{IM}{IA}\)
mà IA=IK
nên \(\dfrac{ME}{EA}=\dfrac{IM}{IK}\)
Xét ΔIMK có IF là phân giác
nên \(\dfrac{IM}{IK}=\dfrac{MF}{FK}\)
=>\(\dfrac{ME}{EA}=\dfrac{MF}{FK}\)
Xét ΔMAK có \(\dfrac{ME}{EA}=\dfrac{MF}{FK}\)
nên EF//AK
Ta có: EF//AK
AK//BD(AKBD là hình bình hành)
Do đó: EF//BD
Giải giúp mình bài c thôi cũng được ạ 😢