Tìm tất cả các hàm số f: Z --> Z thoả mãn \(f\left(f\left(x\right)+yf\left(x^2\right)\right)=x+x^2f\left(y\right)\) với mọi x,y thuộc Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Cho $y=0$ thì: $f(x^3)=xf(x^2)$
Tương tự khi cho $x=0$
$\Rightarrow f(x^3-y^3)=xf(x^2)-yf(y^2)=f(x^3)-f(y^3)$
$\Rightarrow f(x-y)=f(x)-f(y)$ với mọi $x,y\in\mathbb{R}$
Cho $x=0$ thì $f(-y)=0-f(y)=-f(y)$
Cho $y\to -y$ thì: $f(x+y)=f(x)-f(-y)=f(x)--f(y)=f(x)+f(y)$ với mọi $x,y\in\mathbb{R}$
Đến đây ta có:
$f[(x+1)^3+(x-1)^3]=f(2x^3+6x)=f(2x^3)+f(6x)$
$=2f(x^3)+6f(x)=2xf(x^2)+6f(x)$
$f[(x+1)^3+(x-1)^3]=f[(x+1)^3-(1-x)^3]$
$=(x+1)f((x+1)^2)-(1-x)f((1-x)^2)$
$=(x+1)f(x^2+2x+1)+(x-1)f(x^2-2x+1)$
$=(x+1)[f(x^2)+2f(x)+f(1)]+(x-1)[f(x^2)-2f(x)+f(1)]$
$=2xf(x^2)+4f(x)+2xf(1)$
Do đó:
$2xf(x^2)+6f(x)=2xf(x^2)+4f(x)+2xf(1)$
$2f(x)=2xf(1)$
$f(x)=xf(1)=ax$ với $a=f(1)$
\(f\left(x^5+y^5+y\right)=x^3f\left(x^2\right)+y^3f\left(y^2\right)+f\left(y\right)\)
Sửa lại đề câu 2 !!
Thay \(x=0;y=0\) vào giả thiết ta được \(f\left(0\right)=0\)
Thay \(y=0\) ta được \(f\left(x\right)+f\left(-x\right)=0\Rightarrow f\) là hàm lẻ
(Phân tích 1 chút: khi đã có hàm lẻ, ta cần thế tiếp 1 cặp sao cho "khử" được biểu thức phức tạp dạng hàm lồng đầu tiên, bằng cách tìm 1 giá trị y sao cho: \(x.f\left(y\right)-y=-\left(x+y\right)\) hoặc là \(x.f\left(y\right)-y=-\left(xy-x\right)\). Cái thứ nhất cho ta \(x.\left[f\left(y\right)+1\right]=0\Rightarrow f\left(y\right)=-1\) , nghĩa là ta chỉ cần tìm 1 hằng số c sao cho \(f\left(c\right)=-1\). Cái thứ 2 ko cho điều gì tốt nên bỏ qua. Bây giờ ta đi tìm c. Vế phải cần bằng -1, nghĩa là \(xy=-\dfrac{1}{2}\), vế trái cần khử bớt 2 số hạng. Nhưng trước khi có c thì \(f\left(x.f\left(y\right)-y\right)\) chưa khử được, nên ta cần khử cặp sau, bằng cách cho \(xy-x=-\left(x+y\right)\Rightarrow xy=-y\Rightarrow x=-1\), thay vào \(xy=-\dfrac{1}{2}\Rightarrow y=\dfrac{1}{2}\). Xong.)
Thế \(x=-1;y=\dfrac{1}{2}\) ta được:
\(f\left(-f\left(\dfrac{1}{2}\right)-\dfrac{1}{2}\right)+f\left(-\dfrac{1}{2}+1\right)+f\left(-1+\dfrac{1}{2}\right)=-1\)
\(\Leftrightarrow f\left(-f\left(\dfrac{1}{2}\right)-\dfrac{1}{2}\right)=-1\)
Đặt \(c=-f\left(\dfrac{1}{2}\right)-\dfrac{1}{2}\) là 1 hằng số nào đó
\(\Rightarrow f\left(c\right)=-1\)
Thế \(y=c\) vào ta được:
\(f\left(x.f\left(c\right)-c\right)+f\left(cx-x\right)+f\left(x+c\right)=2c.x\)
\(\Leftrightarrow f\left(-x-c\right)+f\left(x+c\right)+f\left(cx-x\right)=2c.x\)
\(\Leftrightarrow f\left(cx-x\right)=2c.x\) (1)
- Nếu \(c=1\Rightarrow f\left(0\right)=2x\) ko thỏa mãn \(f\left(0\right)=0\)
\(\Rightarrow c\ne1\), khi đó đặt \(cx-x=t\) \(\Rightarrow x=\dfrac{t}{c-1}\)
(1) trở thành \(f\left(t\right)=\dfrac{2c}{c-1}.t\)
Đặt \(\dfrac{2c}{c-1}=a\) \(\Rightarrow f\left(t\right)=a.t\)
Hay hàm cần tìm có dạng \(f\left(x\right)=ax\) với a là hằng số
\(f\left(x\right)-\left(x+1\right)f'\left(x\right)=2x.f^2\left(x\right)\)
\(\Rightarrow\dfrac{f\left(x\right)-\left(x+1\right)f'\left(x\right)}{f^2\left(x\right)}=2x\)
\(\Rightarrow\left[\dfrac{x+1}{f\left(x\right)}\right]'=2x\)
Lấy nguyên hàm 2 vế:
\(\dfrac{x+1}{f\left(x\right)}=\int2xdx=x^2+C\)
Thay \(x=1\Rightarrow\dfrac{2}{f\left(1\right)}=1+C\Rightarrow C=0\)
\(\Rightarrow f\left(x\right)=\dfrac{x+1}{x^2}\Rightarrow\int\limits^2_1\left(\dfrac{1}{x}+\dfrac{1}{x^2}\right)dx=\left(lnx-\dfrac{1}{x}\right)|^2_1=ln2+\dfrac{1}{2}\)
Thế \(\left(x;y\right)=\left(0;-1\right)\) vào ta được \(f\left(0\right)=0\)
Thế \(y=0\Rightarrow f\left(f\left(x\right)\right)=x\)
Do vế phải của biểu thức trên là hàm bậc nhất \(\Rightarrow\) có tập giá trị là \(Z\Rightarrow f\) là toàn ánh
Giả sử tồn tại \(x_1;x_2\) sao cho \(f\left(x_1\right)=f\left(x_2\right)=a\Rightarrow\left\{{}\begin{matrix}f\left(f\left(x_1\right)\right)=x_1\Rightarrow f\left(a\right)=x_1\\f\left(f\left(x_2\right)\right)=x_2\Rightarrow f\left(a\right)=x_2\end{matrix}\right.\)
\(\Rightarrow x_1=x_2\Rightarrow f\) là đơn ánh \(\Rightarrow f\) là song ánh
Thế \(\left(x;y\right)=\left(1;-1\right)\Rightarrow f\left(0\right)=1+f\left(-1\right)\Rightarrow f\left(-1\right)=-1\)
Thế \(\left(x;y\right)=\left(-1;f\left(1\right)\right)\Rightarrow f\left(f\left(-1\right)+f^2\left(1\right)\right)=-1+f\left(f\left(1\right)\right)\)
\(\Rightarrow f\left(f^2\left(1\right)-1\right)=-1+1=0\Rightarrow f^2\left(1\right)-1=0\) (do \(f\) song ánh)
\(\Rightarrow f^2\left(1\right)=1\Rightarrow f\left(1\right)=1\) (cũng vẫn do \(f\) song ánh nên \(f\left(1\right)\ne-1\) do \(f\left(-1\right)=-1\))
Thế \(\left(x;y\right)=\left(1;x\right)\Rightarrow f\left(1+x\right)=1+f\left(x\right)\) (1)
Từ đẳng thức trên, do \(x\in Z\) nên ta có thể quy nạp để tìm hàm \(f\):
- Với \(x=0\Rightarrow f\left(1\right)=1\)
- Với \(x=1\Rightarrow f\left(2\right)=f\left(1+1\right)=1+f\left(1\right)=2\)
- Giả sử \(f\left(k\right)=k\), ta cần chứng minh \(f\left(1+k\right)=1+k\), nhưng điều này hiển nhiên đúng theo (1)
Vậy \(f\left(x\right)=x\) là hàm cần tìm