Giải pt: \(x^2-8x-24=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
1.
PT $\Leftrightarrow (x^2+5x)^2+2(x^2+5x)-24=0$
$\Leftrightarrow t^2+2t-24=0$ (đặt $x^2+5x=t$)
$\Leftrightarrow (t-4)(t+6)=0$
$\Rightarrow t-4=0$ hoặc $t+6=0$
Nếu $t-4=0\Leftrightarrow x^2+5x-4=0$
$\Leftrightarrow x=\frac{-5\pm \sqrt{41}}{2}$
Nếu $t+6=0$
$\Leftrightarrow x^2+5x+6=0$
$\Leftrightarrow (x+2)(x+3)=0\Rightarrow x=-2$ hoặc $x=-3$
2.
PT $\Leftrightarrow (x^2-4x+1)^2+2(x^2-4x+1)-3=0$
$\Leftrightarrow t^2+2t-3=0$ (đặt $x^2-4x+1=t$)
$\Leftrightarrow (t-1)(t+3)=0$
$\Rightarrow t-1=0$ hoặc $t+3=0$
Nếu $t-1=0\Leftrightarrow x^2-4x=0\Leftrightarrow x(x-4)=0$
$\Rightarrow x=0$ hoặc $x=4$
Nếu $t+3=0\Leftrightarrow x^2-4x+4=0$
$\Leftrightarrow (x-2)^2=0\Leftrightarrow x=2$
Kiểm tra lại đề câu a, \(...+24\) thì pt vô nghiệm, phải là \(...-24\) mới có lý
b/ \(x^2-\left(y+1\right)x+y^2-y-2=0\) (1)
\(\Delta=\left(y+1\right)^2-4\left(y^2-y-2\right)\ge0\)
\(\Leftrightarrow-3y^2+6y+9\ge0\)
\(\Leftrightarrow-1\le y\le3\Rightarrow y=\left\{-1;0;1;2;3\right\}\)
Thay lần lượt vào pt ban đầu để tìm x nguyên
ĐKXĐ: ...
\(\Leftrightarrow x^2+\left(x^2+8x\right)+\left(14-2\sqrt{x^2+8x}\right)x-14\sqrt{x^2+8x}+24=0\)
Đặt \(\sqrt{x^2+8x}=a\ge0\) pt trở thành:
\(x^2+a^2+\left(14-2x\right)x-14a+24=0\)
\(\Leftrightarrow x^2-2ax+a^2+14\left(x-a\right)+24=0\)
\(\Leftrightarrow\left(x-a\right)^2+14\left(x-a\right)+24=0\)
\(\Leftrightarrow\left(x-a+2\right)\left(x-a+12\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=x+2\\a=x+12\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+8x}=x+2\left(x\ge-2\right)\\\sqrt{x^2+8x}=x+12\left(x\ge-12\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+8x=x^2+4x+4\\x^2+8x=x^2+24x+144\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-9\end{matrix}\right.\)
\(1,\Delta=\left(-11\right)^2-4\cdot30=1\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11-1}{2}=5\\x=\dfrac{11+1}{2}=6\end{matrix}\right.\\ 2,\Delta=\left(-1\right)^2-4\left(-20\right)=81\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1-\sqrt{81}}{2}=-4\\x=\dfrac{1+\sqrt{81}}{2}=5\end{matrix}\right.\\ 3,\Delta=14^2-4\cdot24=100\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-14-\sqrt{100}}{2}=-12\\x=\dfrac{-14+\sqrt{100}}{2}=-2\end{matrix}\right.\\ 4,\Delta=8^2-4\left(-2\right)3=88\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-8-\sqrt{88}}{6}=\dfrac{-4+\sqrt{22}}{3}\\x=\dfrac{-8+\sqrt{88}}{6}=\dfrac{-4-\sqrt{22}}{3}\end{matrix}\right.\)
=>-(x+3)^2*(x-4)(x+12)=x^2-48x+576
=>-(x^2+6x+9)(x^2+8x-48)=x^2-48x+576
=>-x^4-14x^3-9x^2+216x+432=x^2-48x+576
=>x^4+14x^3+10x^2-264x+144=0
=>(x^2+4x-24)(x^2+10x-6)=0
=>\(x\in\left\{-5+\sqrt{31};-5-\sqrt{31};-2+2\sqrt{7};-2-2\sqrt{7}\right\}\)
đề bài đúng không z? theo tôi đề là \(\sqrt{x+2}+\sqrt{6-x}=\sqrt{x^2-8x+24}\)?!
ĐKXĐ:...
Áp dụng BĐT AM-GM:
\(\left(\sqrt{x+2}+\sqrt{6-x}\right)^2\le2\left(x+2+6-x\right)=16\)
\(\Leftrightarrow\sqrt{x+2}+\sqrt{6-x}\le4\)
Lại có \(x^2-8x+24=\left(x-4\right)^2+8\ge8\forall x\)
Vậy pt vô nghiệm.
(4x - 3)2 - (2x + 1)2 = 0
\(\Leftrightarrow\) (4x - 3 - 2x - 1)(4x - 3 + 2x + 1) = 0
\(\Leftrightarrow\) (2x - 4)(6x - 2) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x-4=0\\6x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x=4\\6x=2\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy ...
3x - 12 - 5x(x - 4) = 0
\(\Leftrightarrow\) 3x - 12 - 5x2 + 20x = 0
\(\Leftrightarrow\) -5x2 + 23x - 12 = 0
\(\Leftrightarrow\) 5x2 - 23x + 12 = 0
\(\Leftrightarrow\) 5x2 - 20x - 3x + 12 = 0
\(\Leftrightarrow\) 5x(x - 4) - 3(x - 4) = 0
\(\Leftrightarrow\) (x - 4)(5x - 3) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-4=0\\5x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=4\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy ...
(8x + 2)(x2 + 5)(x2 - 4) = 0
\(\Leftrightarrow\) (8x + 2)(x2 + 5)(x - 2)(x + 2) = 0
Vì x2 \(\ge\) 0 \(\forall\) x nên x2 + 5 > 0 \(\forall\) x
\(\Rightarrow\) (8x + 2)(x - 2)(x + 2) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}8x+2=0\\x-2=0\\x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=2\\x=-2\end{matrix}\right.\)
Vậy ...
Chúc bn học tốt!
a) Ta có: \(\left(4x-3\right)^2-\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left(4x-3-2x-1\right)\left(4x-3+2x+1\right)=0\)
\(\Leftrightarrow\left(2x-4\right)\left(6x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-4=0\\6x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\6x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{2;\dfrac{1}{3}\right\}\)
b) Ta có: \(3x-12-5x\left(x-4\right)=0\)
\(\Leftrightarrow3\left(x-4\right)-5x\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(3-5x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\3-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\5x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{3}{5}\end{matrix}\right.\)
Vậy: \(S=\left\{4;\dfrac{3}{5}\right\}\)
c) Ta có: \(\left(8x+2\right)\left(x^2+5\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow2\left(4x+1\right)\left(x^2+5\right)\left(x-2\right)\left(x+2\right)=0\)
mà \(2>0\)
và \(x^2+5>0\forall x\)
nên \(\left(4x+1\right)\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+1=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=-1\\x=2\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{4}\\x=2\\x=-2\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{1}{4};2;-2\right\}\)
Điều kiện: \(2\le x\le6\)
Bình phương cả 2 vế ta được:
\(x-2+6-x+2\sqrt{\left(x-2\right)\left(6-x\right)}=x^2-8x+24\)
<=> \(4+2\sqrt{-x^2+8x-12}=x^2-8x+24\) (*)
Đặt \(t=\sqrt{-x^2+8x-12}\left(t\ge0\right)\) => \(t^2=-x^2+8x-12=-\left(x^2-8x+24\right)+12\)
Phương trình (*) trở thành: 4 + 2t = 12 - t2
<=> t2 + 2t - 8 = 0
<=> (t +4).(t - 2) = 0 <=> t = 2 hoặc t = -4
t = 2 thỏa mãn
=> -x2 + 8x - 12 = 4
<=> -x2 + 8x - 16 = 0 <=> -(x - 4)2 = 0 <=> x = 4 (thỏa mãn)
Vậy x = 4 là nghiệm của pt
\(x^4-4x^2+8x+4=0\)
\(\Leftrightarrow x^2\left(x^2-4\right)+8\left(x+2\right)=0\)
\(\Leftrightarrow x^2\left(x-2\right)\left(x+2\right)+8\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-2x^2+8\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+2=0\\x^3-2x^2+8=0\end{array}\right.\)
Tới đây tự giải nhé :)
Đầu tiên ta phân tích : \(x^4+4=\left(x^4+4x^2+4\right)-4x^2=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
Suy ra pt : \(\left(x^2-2x+2\right)\left(x^2+2x+2\right)-4x\left(x-2\right)=0\)
Nhận thấy x = 0 không là nghiệm của pt, do đó chia cả hai vế của pt cho \(x^4\ne0\) được :
\(\left(1-\frac{2}{x}+\frac{2}{x^2}\right)\left(1+\frac{2}{x}+\frac{2}{x^2}\right)-4\left(\frac{1}{x^2}-\frac{2}{x^3}\right)=0\)
Đặt \(t=\frac{2}{x}\) , pt trở thành : \(\left(1-2t+2t^2\right)\left(1+2t+2t^2\right)-4\left(t^2-2t^3\right)=0\)
Tới đây thử giải pt với ẩn t xem có đc k
lớp 1 chưa học phương trình đâu
nhưng em cx giải luôn
x2-8x-24=0
a=1;b=-8;c=-24
den ta= (-8)2-4.1.(-24)=160>0
phương trình có 2 nghiệm phân biệt
x1= 8+căn 160 /2
x2=8- căn 160 / 2
tau bảo dùng denta mà éo nghe