cho hpt \(\left\{{}\begin{matrix}mx+\left(m+4\right)y=2\\m\left(x+y\right)=1-y\end{matrix}\right.\) để hệ này vô nghiệm đk thích hợp cho tham số m là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1.
\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)
\(x_0^2+y_0^2=9m\)
\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)
\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)
\(\Leftrightarrow2m^2-7m+5=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )
1, Gỉa sử m = 1
Thay m = 1 vào hpt trên ta được
\(\left\{{}\begin{matrix}x+y=1\\4x+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{2}{3}\end{matrix}\right.\)
2, Để hệ có nghiệm duy nhất \(\dfrac{m}{4}\ne\dfrac{1}{m}\Leftrightarrow m^2\ne4\Leftrightarrow m\ne\pm2\)
\(\left\{{}\begin{matrix}m^2x+my=m\\4x+my=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-4\right)x=m-2\\y=1-mx\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{m+2}\\y=1-\dfrac{m}{m+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{m+2}\\y=\dfrac{2}{m+2}\end{matrix}\right.\)
Ta có : \(\dfrac{1}{m+2}-\dfrac{2}{m+2}=1\Rightarrow1-2=m+2\Leftrightarrow-1=m+2\Leftrightarrow m=-3\)(tmđk)
a, Với m = 1
\(\left\{{}\begin{matrix}x+y=1_{\left(1\right)}\\4x+y=2_{\left(2\right)}\end{matrix}\right.\)
Lấy (2) - (1) ta được
\(3x=1\Leftrightarrow x=\dfrac{1}{3};\Rightarrow y=1-x=1-\dfrac{1}{3}=\dfrac{2}{3}\)
Vậy (x,y) = \(\left(\dfrac{1}{3};\dfrac{2}{3}\right)\)
c, no của hệ là
\(\left(\dfrac{-1}{m+2};\dfrac{2m+2}{m+2}\right)\\ Theo.bài:\\ x-y=1\\ \Leftrightarrow\dfrac{-1}{m+2}-\dfrac{2m+2}{m+2}=1\\ \Leftrightarrow-1-2m-2=m+2\\ \Leftrightarrow3m=-5\\ m=\dfrac{-5}{3}\)
Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)
=>\(m^2\ne1\)
=>\(m\notin\left\{1;-1\right\}\)
Khi \(m\notin\left\{1;-1\right\}\) thì \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y-2m=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y\left(-m^2+1\right)=-m^2+m\\x=m+1-my\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m^2-m}{m^2-1}=\dfrac{m\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\dfrac{m}{m+1}\\x=m+1-\dfrac{m^2}{m+1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m}{m+1}\\x=\dfrac{\left(m+1\right)^2-m^2}{m+1}=\dfrac{2m+1}{m+1}\end{matrix}\right.\)
Để \(\left\{{}\begin{matrix}x>=2\\y>=1\end{matrix}\right.\) thì \(\left\{{}\begin{matrix}\dfrac{2m+1}{m+1}>=2\\\dfrac{m}{m+1}>=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2\left(m+1\right)}{m+1}>=0\\\dfrac{m-m-1}{m+1}>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2m-2}{m+1}>=0\\\dfrac{-1}{m+1}>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-\dfrac{1}{m+1}>=0\\-\dfrac{1}{m+1}>=0\end{matrix}\right.\Leftrightarrow m+1< 0\)
=>m<-1
thay m=2 vào HPT ta có
\(\left\{{}\begin{matrix}x+2y=2+1\\2x+y=2.2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+2y=3\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+4y=6\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3y=2\\2x+y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=\dfrac{2}{3}\end{matrix}\right.\)
vậy ..........
Bài 1:
- Với \(m=0\) ta có:
\(\left\{{}\begin{matrix}0x+y=3.0-1\\x+0y=0+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Vậy với \(m=0\) hệ đã cho có nghiệm duy nhất.
- Với \(m\ne0\), ta có:
\(\left\{{}\begin{matrix}mx+y=3m-1\\x+my=m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-m^2x-my=-3m^2+m\\x+my=m+1\left(2\right)\end{matrix}\right.\)
\(\Rightarrow\left(1-m^2\right)x=-3m^2+2m+1\left(1\right)\)
- Với \(m=1\). Thế vào (1) ta được:
\(0x=0\) (phương trình vô số nghiệm).
\(\left(2\right)\Rightarrow x+y=2\Leftrightarrow y=2-x\)
- Vậy với \(m=1\) thì hệ đã cho có vô số nghiệm với nghiệm tổng quát có dạng \(\left\{{}\begin{matrix}x\in R\\y=2-x\end{matrix}\right.\)
Với \(m=-1\). Thế vào (1) ta được:
\(0x=-4\) (phương trình vô nghiệm)
Vậy với \(m=-1\) thì hệ đã cho vô nghiệm
Với \(m\ne\pm1,0\).
\(\left(1\right)\Leftrightarrow x=\dfrac{-3m^2+2m+1}{\left(1-m\right)\left(1+m\right)}\)
\(\Leftrightarrow x=\dfrac{-3m^2+3m-m+1}{\left(1-m\right)\left(1+m\right)}\)
\(\Leftrightarrow x=\dfrac{3m\left(1-m\right)+\left(1-m\right)}{\left(1-m\right)\left(1+m\right)}\)
\(\Leftrightarrow x=\dfrac{\left(1-m\right)\left(3m+1\right)}{\left(1-m\right)\left(1+m\right)}\)
\(\Leftrightarrow x=\dfrac{3m+1}{m+1}\)
Thay vào (2) ta được:
\(\dfrac{3m+1}{m+1}+my=m+1\)
\(\Leftrightarrow3m+1+my\left(m+1\right)=\left(m+1\right)^2\)
\(\Leftrightarrow3m+1+my\left(m+1\right)=m^2+2m+1\)
\(\Leftrightarrow my\left(m+1\right)=m^2-m\)
\(\Leftrightarrow y=\dfrac{m\left(m-1\right)}{m\left(m+1\right)}\)
\(\Leftrightarrow y=\dfrac{m-1}{m+1}\)
Vậy với \(m\ne\pm1\) thì hệ đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(\dfrac{3m+1}{m+1};\dfrac{m-1}{m+1}\right)\).
Bài 2:
\(\left\{{}\begin{matrix}x-\left(m+1\right)y=1\left(2\right)\\4x-y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-4x+4\left(m+1\right)y=-4\\4x-y=-2\left(1\right)\end{matrix}\right.\)
\(\Rightarrow4\left(m+1\right)y-y=-6\)
\(\Leftrightarrow\left(4m+3\right)y=-6\)
\(\Rightarrow y=-\dfrac{6}{4m+3}\)
Để y nguyên thì:
\(6⋮\left(4m+3\right)\)
\(\Rightarrow\left(4m+3\right)\inƯ\left(6\right)\)
\(\Rightarrow4m+3\in\left\{1;2;3;6;-1;-2;-3;-6\right\}\)
4m+3 | 1 | 2 | 3 | 6 | -1 | -2 | -3 | -6 |
m | -1/2 (loại) | -1/4 (loại) | 0 (nhận) | 3/4 (loại) | -1 (nhận) | -5/4 (loại) | -3/2 (loại) | -9/4 (loại) |
\(\Rightarrow m\in\left\{0;-1\right\}\)
Với \(m=0\) ta có \(y=-\dfrac{6}{4.0+3}=-2\)
Thay vào (1) ta được:
\(4x-\left(-2\right)=-2\Leftrightarrow x=-1\)
Thử lại \(x=-1;y=-2\) cho (2) ta thấy phương trình nghiệm đúng.
Vậy \(\left(x;y\right)=\left(-1;-2\right)\) là 1 nghiệm nguyên của hệ phương trình.
Với \(m=-1\) ta có \(y=-\dfrac{6}{4.\left(-1\right)+3}=6\)
Thay \(y=6\) vào (2) ta được:
\(4x-6=-2\)
\(\Leftrightarrow x=1\)
Thử lại \(x=1;y=6\) cho (2) ta thấy pt nghiệm đúng.
Vậy \(\left(x;y\right)=\left(1;6\right)\) là 1 nghiệm nguyên của hệ phương trình.
Câu nào biết thì mink làm, thông cảm !
Bài 1:
1) Cho \(a=1\) ta được:
\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}2x=5\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\\frac{5}{2}+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{1}{2}\end{cases}}\)
2) Cho \(a=\sqrt{3}\) ta được:
\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x\sqrt{3}-y=2\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}3x-y\sqrt{3}=2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}4x=3+2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\\frac{3+2\sqrt{3}}{4}+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\y=\frac{-2+3\sqrt{3}}{4}\end{cases}}\)
Bữa sau làm tiếp
\(\left\{{}\begin{matrix}mx+\left(m+4\right)y=2\\m\left(x+y\right)=1-y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}mx+\left(m+4\right)y=2\\mx+\left(m+1\right)y=1\end{matrix}\right.\)
Nếu \(m=0\), hệ trở thành \(\left\{{}\begin{matrix}4y=2\\y=1\end{matrix}\right.\Rightarrow\) vô nghiệm
\(\Rightarrow m=0\left(tm\right)\)
Nếu \(m=-1\), hệ trở thành \(\left\{{}\begin{matrix}-x+3y=2\\-x=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=\dfrac{1}{3}\end{matrix}\right.\)
\(\Rightarrow m=-1\left(l\right)\)
Nếu \(m\ne0,m\ne-1\), yêu cầu bài toán thỏa mãn khi \(1=\dfrac{m+4}{m+1}\ne2\)
\(\Rightarrow\) không tồn tại m thỏa mãn
Vậy \(m=0\)