1+5+8+12+15+19+⋯+99+103
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a,A=1 + ( -3) + 5 + ( -7 ) + ... + 17 + ( -19 )
A=( 1 - 3 ) + ( 5 - 7 ) + ...+ ( 17 +19 )
A= (-2 ) . 10
A= (-20)
b, B= 1-4+7-10 +... -100 + 103
B= 1+ ( -4 + 7 ) + ( -10 +13 ) +...+ (-100 +103 )
B= 1 + 3 + 3 +...+3
B= 1+3 .17
B= 52
c, C= 1 + 2 -3 -4+5+6-7-8+..-99-100+101+102
C= 1 + ( 2-3-4+5) +(6-7 -8+9)+...+(98-99-100+101)+102
C= 1 + 0 + 0 + 0 + 0 + ... + 0 + 102
C= 103
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=1+3-4+11-15+19-23+...+99-103\)
\(A=1+\left(3-7\right)+\left(11-15\right)+\left(19-23\right)+...+\left(99-103\right)\)
\(A=1+\left(-4\right)+\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)
\(A=1+\left(-4\right).13\)
\(A=1+\left(-52\right)\)
\(A=-51\)
![](https://rs.olm.vn/images/avt/0.png?1311)
dễ ẹc
Ta có :
3-7=11-15=...=99-103
Từ 3 đến 103 có số số hạng là :
( 103 - 3 ) : 4 + 1 = 26 ( số )
Từ 3 đến 103 có số cặp là :
26 : 2 = 13 ( cặp )
Vậy1+ 3-7+11-15+19-23+...+99-103 = 13 . (-4) +1 = -51
Đáp Số : -51
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(=\dfrac{99}{100}:\left(\dfrac{3}{12}-\dfrac{1}{12}+\dfrac{4}{12}\right)-\dfrac{49}{25}\)
\(=\dfrac{99}{100}:\dfrac{1}{2}-\dfrac{49}{25}\)
\(=\dfrac{99}{50}-\dfrac{98}{50}=\dfrac{1}{50}\)
b: \(=\dfrac{13}{15}\cdot\dfrac{1}{4}\cdot3+\left(\dfrac{32}{60}-1-\dfrac{19}{60}\right):\dfrac{47}{24}\)
\(=\dfrac{39}{60}+\dfrac{-19}{60}\cdot\dfrac{24}{47}\)
=459/940
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 1+3+5+7+9+11+13+15+17+19
= ( 1 + 19 ) + ( 3 + 17 ) + ( 5 + 15 ) + ( 7 + 13 ) + ( 9 + 11 )
= 20 + 20 + 20 + 20 + 20
= 20 x 5
= 100
![](https://rs.olm.vn/images/avt/0.png?1311)
a.1+3+5+7+9+11+13+15+17+19
muốn tính tổng của dãy ta lấy tổng số đầu và cuối nhân số các số hạng rồi chia 2.
tổng của dãy:(19+1)x10:2=100
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
\(A=\frac{5}{3.6}+\frac{5}{6.9}+....+\frac{5}{96.99}\)
\(\Rightarrow\frac{3}{5}A=\frac{3}{3.6}+\frac{3}{6.9}+....+\frac{3}{96.99}\)
\(\Rightarrow\frac{3}{5}A=\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+...+\frac{1}{96}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
\(\Rightarrow A=\frac{32}{99}\div\frac{3}{5}=\frac{160}{297}\)
Bái 2:
\(B=\frac{2}{3.7}+\frac{2}{7.11}+...+\frac{2}{99.103}\)
\(\Rightarrow2B=\frac{4}{3.7}+\frac{4}{7.11}+....+\frac{4}{99.103}\)
\(\Rightarrow2B=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+....+\frac{1}{99}-\frac{1}{103}\)
\(=\frac{1}{3}-\frac{1}{103}=\frac{100}{309}\)
\(\Rightarrow B=\frac{100}{309}\div2=\frac{50}{309}\)
Bài 1:
Ta có:
\(\frac{5}{n.\left(n+3\right)}=\frac{5}{3}.\frac{3}{n.\left(n+3\right)}=\frac{5}{3}.\frac{\left(n+3\right)-n}{n.\left(n+3\right)}=\frac{5}{3}.\left[\frac{n+3}{n.\left(n+3\right)}-\frac{n}{n\left(n+3\right)}\right]\)\(=\frac{5}{3}\left(\frac{1}{n}-\frac{1}{n+3}\right)\)
\(\frac{5}{3.6}+\frac{5}{6.9}+\frac{5}{9.12}+...+\frac{5}{96.99}=\frac{5}{3}\left(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+...+\frac{1}{96}-\frac{1}{99}\right)\)
=(1+8+15+...+99)+(5+12+19+...+103)
Ta gọi (1+8+15+...+99) là A ; (5+12+19+...+103) là B.
A có số số hạng là: (99-1):7+1= 15 (số)
B có số số hạng là: (103-5):7+1= 15 (số)
Tổng của A là: (99+1)x15:2=750
Tổng của B là: (103+5)x15:2=810
=750+810
=1560.