Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
MA,MH là tiếp tuyến
nên MA=MH
mà OA=OH
nên OM là phân giác của góc AOH(1) và HM=MA
Xét (O) có
NH,NB là tiếp tuyến
nên NH=NB và ON là phân giác của góc HOB(2)
Từ (1), (2) suy ra góc MON=1/2*180=90 độ
AM*BN=HM*HN=OH^2=R^2
b: AM+BN=HN+HM>=2*OH=AB
Dấu = xảy ra khi MN=AB
=>H trùng với O
a: Xét (O) có
MA.MC là tiếp tuyến
=>MA=MC
mà OA=OC
nên OM là trung trực của AC
=>OM vuông góc AC tại E
góc ADB=1/2*180=90 độ
=>góc ADM=90 độ=góc AEM
=>AMDE nội tiếp
b: AMDE nội tiếp
=>góc ADE=góc AMO=góc ACO
Bài 5:
a: Xét tứ giác BHCA có \(\widehat{BHA}=\widehat{BCA}=90^0\)
nên BHCA là tứ giác nội tiếp
=>B,H,C,A cùng thuộc một đường tròn
b: Xét ΔKHA vuông tại H và ΔKCB vuông tại C có
\(\widehat{HKA}\) chung
Do đó: ΔKHA đồng dạng với ΔKCB
=>\(\dfrac{KH}{KC}=\dfrac{KA}{KB}\)
=>\(KH\cdot KB=KA\cdot KC\)
c: Gọi giao điểm của KE với BA là M
Xét ΔKBA có
AH,BC là các đường cao
AH cắt BC tại E
Do đó: E là trực tâm của ΔKBA
=>KE\(\perp\)BA tại M
Xét ΔBME vuông tại M và ΔBCA vuông tại C có
\(\widehat{MBE}\) chung
Do đó: ΔBME đồng dạng với ΔBCA
=>\(\dfrac{BM}{BC}=\dfrac{BE}{BA}\)
=>\(BM\cdot BA=BC\cdot BE\)
Xét ΔAME vuông tại M và ΔAHB vuông tại H có
\(\widehat{MAE}\) chung
Do đó: ΔAME đồng dạng với ΔAHB
=>\(\dfrac{AM}{HA}=\dfrac{AE}{AB}\)
=>\(AH\cdot AE=AM\cdot AB\)
\(BC\cdot BE+AH\cdot AE=BM\cdot BA+AM\cdot AB=AB^2\) không đổi
a: góc OAC+góc OMC=180 độ
=>OACM nội tiếp
b: góc BOM=2*60=120 độ
=>góc BDM=60 độ
=>ΔBMD đều
\(S_{qMB}=\dfrac{pi\cdot R^2\cdot120}{360}=\dfrac{1}{3}\cdot pi\cdot R^2\)
a: góc MAO+góc MCO=180 độ
=>MAOC nội tiếp
góc ADB=1/2*sđ cung AB=90 độ
=>AD vuông góc MB
Xét (O) có
MA,MC là tiếp tuyến
=>MA=MC
mà OA=OC
nên OM là trung trực của AC
=>OM vuông góc AC tại E
góc ADM=góc AEM=90 độ
=>AEDM là tứ giác nội tiếp
a) Xét (O) có
NA là tiếp tuyến có A là tiếp điểm(gt)
NE là tiếp tuyến có E là tiếp điểm(gt)
Do đó: ON là tia phân giác của \(\widehat{AOE}\)(Tính chất hai tiếp tuyến cắt nhau)
hay \(\widehat{AOE}=2\cdot\widehat{EON}\)
Xét (O) có
ME là tiếp tuyến có E là tiếp điểm(gt)
MB là tiếp tuyến có B là tiếp điểm(gt)
Do đó: OM là tia phân giác của \(\widehat{EOB}\)(Tính chất hai tiếp tuyến cắt nhau)
hay \(\widehat{EOB}=2\cdot\widehat{EOM}\)
Ta có: \(\widehat{EOA}+\widehat{EOB}=180^0\)(hai góc kề bù)
hay \(2\cdot\widehat{EON}+2\cdot\widehat{EOM}=180^0\)
\(\Leftrightarrow\widehat{EON}+\widehat{EOM}=90^0\)
hay \(\widehat{MON}=90^0\)(đpcm)
b) Áp dụng hệ thức lượng trong tam giác vuông vào \(\Delta\)ONM vuông tại O có OE là đường cao ứng với cạnh huyền NM, ta được:
\(ME\cdot NE=OE^2\)
mà OE=R
nên \(ME\cdot NE=R^2\)(đpcm)