Cho ΔABC, M ϵ BC sao cho BC = 4cm. Trên AC lấy N sao cho CN : AN = 1 : 3. Chứng minh rằng MN // AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N
Ta có
\(BC=4CM\Rightarrow\dfrac{CM}{BC}=\dfrac{1}{4}\Rightarrow\dfrac{CM}{BM}=\dfrac{1}{3}=\dfrac{CN}{AN}\)
=> MN//AB (Talet đảo trong tam giác)
a) Xét \(\Delta BACvà\Delta NAMcó\)
\(\widehat{BAC}=\widehat{NAM}\) ( đối đỉnh )
\(BA=NA\) ( gt )
\(CA=MA\) ( gt )
\(\Rightarrow\Delta BAC=\Delta NAM\) ( c.g.c )
\(\Rightarrow BC=MN\) ( 2 cạnh tương ứng )
mik chỉ lm đc v hoi xin lũi bn do chx hiểu cái ý 2 câu a
a: AN+CN=AC
=>AN=20-15=5cm
Xét ΔABC có AM/AB=AN/AC
nên MN//BC
b: Xét ΔAMN và ΔNPC có
góc AMN=góc NPC(=góc B)
góc ANM=góc NCP
=>ΔAMN đồng dạng với ΔNPC
Ap dụng định lý Pytago vào tam giác vuông \(ABC\)ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\)\(BC^2=3^2+4^2=25\)
\(\Leftrightarrow\)\(BC=\sqrt{25}=5\)
a: AM=6-2=6cm
AN=12-3=9cm
=>AM/AB=AN/AC
=>MN//BC
b: Xet ΔAKC có NI//KC
nên NI/KC=AI/AK
Xét ΔABK có MI//BK
nên MI/BK=AI/AK
=>NI/KC=MI/BK
c: NI/KC=MI/BK
KC=KB
=>NI=MI
=>I là tđ của MN
a) Ta có: \(\dfrac{AM}{AB}=\dfrac{1.5}{6}=\dfrac{1}{4}\)
\(\dfrac{AN}{AC}=\dfrac{AC-CN}{AC}=\dfrac{4-3}{4}=\dfrac{1}{4}\)
Do đó: \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(=\dfrac{1}{4}\right)\)
Xét ΔABC có
\(M\in AB\)(gt)
\(N\in AC\)(gt)
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(=\dfrac{1}{4}\right)\)(cmt)
Do đó: MN//BC(Định lí Ta lét đảo)
a: BC=15cm
b: Xét ΔABM có
BH là đường cao
BH là đường trung tuyến
Do đó: ΔABM cân tại B
c: Xét tứ giác ABNC có
K là trung điểm của BC
K là trung điểm của AN
Do đó: ABNC là hình bình hành
Suy ra: CN=AB
mà AB=BM
nên CN=BM
Bạn coi lại đề giùm mình
bạn phải nói rõ là mc hay là bm bằng bao nhiêu chứ?
Đề chỉ cho đến thế thôi bạn ạ