K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2017

S = (2^ 1+2^ 2 )+(2^ 3+2^ 4 )+...+(2^ 99+2^ 100 )

S = 2.(1+2)+2^ 3 .(1+2)+...+2 ^99 .(1+2)

S = 2.3+2 ^3 .3+...+2 ^99 .3

S = 3.(2+2^ 3+...+2^ 99 ) =>

S chia hết cho 3

S = (2^ 1+2^ 2+2^ 3+2 ^4 )+(2^ 5+2^ 6+2^ 7+2 ^8 )+...+(2^ 97+2^ 98+2^ 99+2 ^100 )

S = 2.(1+2+4+16)+2^ 5 .(1+2+4+16)+...+2^ 97 .(1+2+4+16) S = 2.15+2^ 5 .15+...+2^ 97 .15

S = 15.(2+2^ 5+...+2^ 97 ) =>

S chia hết cho 15 

5 tháng 1 2017

minh chi lam dc cau a thoi nha nhung hay t i c k cho minh

3 + 32 = 12 chia het cho 4  3 + 32 + 33 + .......+39 + 310 = 30 .[ 3+32 ] + 32 . [ 3 + 3] + ....+38 . [ 3 + 32 ]

=30 . 12 + 3 . 12 +.....+ 38 . 12 = 12.[3+ 32 +....+ 38 ] 

vi 12 chia het cho 4 nen 12 nhan voi so tu nhien nao thi so do cung chia het cho 4 nen A chia het cho 4

10 tháng 12 2017

hghjhgjhgjh

3 tháng 1 2017

\(H=2+2^2+...+2^{100}\)

\(\Rightarrow H=\left(2+2^2+2^3+2^4\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(\Rightarrow H=2\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)

\(\Rightarrow H=2.15+...+2^{97}.15\)

\(\Rightarrow H=\left(2+...+2^{97}\right).15⋮15\)

\(\Rightarrow H⋮15\left(đpcm\right)\)

17 tháng 1 2017

nì !!!!!! chinh :)

Đầu tiên bn phải chứng minh chia hết cho 5 và 31 vì 5 và 31 là 2 số nguyên tố cùng nhau
Chứng minh chia hết cho 5
2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+......+2^97(1+2+2^2+2^3)
=2.15+2^5.15+....+2^97.15 suy ra chia hết cho 5 vì 15 chia hết cho Tương tự cx làm chia hết cho 31 lần lượt là
2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)+…+2^96(1+2+2^2+2^3+2^4)
=2.31+2^6.31+2^96.41 suy ra chia hết cho 31 mà 31 và 5 là hai số nguyên tố cùng nhau nên nó chia hết cho 31.5=155

18 tháng 1 2017

- Ôi <3

30 tháng 12 2017

a = 2 + 22 +23+........................+ 2100 chia hết cho 62

  a =  [ 2 + 22 +23+.24+25  ] +[ 26 +27 +28+29+210 ] + ...........+ [ 296 + 297 +298 +299 + 2100 ] 

 a= 62 + [ 210 . 62 ] + [ 215 . 62 ] + [ 220. 62 ] + ......................+ [ 2100 . 62 ] 

a=  62 . [ 210 +  215 +  220 +......................+  2100 ] 

 Mà 62 chia hết cho 62 =>    62 . [ 210 +  215 +  220 +......................+  2100 ]   hay a chia hết cho 62

30 tháng 12 2017

a = (2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^10)+.....+(2^96+2^97+2^98+2^99+2^100)

   = 62+2^5.(2+2^2+2^3+2^4+2^5)+......+2^95.(2+2^2+2^3+2^4+2^5)

   = 62+2^5.62+....+2^95.62

   = 62.(1+2^5+....+2^95) chia hết cho 62

=> ĐPCM

k mk nha