Bài 1: Cho hệ phương trình \(\left\{{}\begin{matrix}x+my=9\\mx-3y=4\end{matrix}\right.\) (m là tham số)
a) Giải hệ phương trình với m = 3
b) Tìm m để hệ có nghiệm x= -1, y=3
c) Chứng tỏ hệ phương trình có nghiệm duy nhất với mọi giá trị của tham số m
(mink đag cần gấp)
a. Bạn tự giải
b. Thế cặp nghiệm x=-1, y=3 vào hệ ban đầu ta được:
\(\left\{{}\begin{matrix}-1+3m=9\\-m-9=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3m=10\\-m=13\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại m thỏa mãn
c. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=9m\\mx-3y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+3\right)y=9m-4\\mx-3y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{9m-4}{m^2+3}\\x=\dfrac{4m+27}{m^2+3}\end{matrix}\right.\)
Vậy với mọi m thì hệ luôn có nghiệm duy nhất như trên