K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2021

Đặt A = \(\left|x-2013\right|+\left|x-1\right|\)

Ta có : \(\left|x-2013\right|\ge0\forall x\)\(\left|x-1\right|\ge0\forall x\)

=> A \(\ge\)0

Dấu ''='' xảy ra : <=> x = 2013 ; 1 

Vật GTNN A là 0 <=> x = 2013 ; 1

26 tháng 7 2019

\(A=x^2-x+\frac{1}{x}+2013=\left(x^2+1\right)-x+\frac{1}{x}+2012\ge2\sqrt{x^2.1}-x+\frac{1}{x}+2012=2x-x+\frac{1}{x}+2012=x+\frac{1}{x}+2012\ge2\sqrt{x.\frac{1}{x}}+2014\Rightarrow A_{min}=2014.\)

Dâu "=" xay ra\(\Leftrightarrow x=1\)

26 tháng 7 2019

\(x+\frac{1}{x}+2012\ge2\sqrt{x.\frac{1}{x}}+2012=2014\text{ nha}\)

AH
Akai Haruma
Giáo viên
25 tháng 6 2024

Lời giải:

Nếu $x> 2013$ thì:

$A=|x-1|+|x-2013|=x-1+x-2013=2x-2014> 2.2013-2014=2012(1)$

Nếu $1\leq x\leq 2013$ thì:

$A=x-1+2013-x=2012$

Nếu $x<1$ thì:

$A=1-x+2013-x=2014-2x> 2014-2.1=2012$

Từ 3 TH trên suy ra $A_{\min}=2012$ khi $1\leq x\leq 2013$

12 tháng 1 2021

Áp dụng bất đẳng thức AM - GM:

\(\dfrac{x^2}{y-1}+4\left(y-1\right)\ge2\sqrt{\dfrac{x^2}{y-1}.4\left(y-1\right)}\)

\(\Rightarrow\dfrac{x^2}{y-1}+4\left(y-1\right)\ge4x\).

Tương tự, \(\dfrac{y^2}{x-1}+4\left(x-1\right)\ge4y\).

Cộng vế với vế hai bđt trên rồi rút gọn ta được:

\(\dfrac{x^2}{y-1}+\dfrac{y^2}{x-1}\ge8\)

\(\Rightarrow P\ge8+2013=2021\).

Đẳng thức xảy ra khi x = y = 2.

Vậy.... 

10 tháng 2 2019

P/s: ko chắc 

\(P=\frac{x^2-x+1}{x^2+x+1}\)

\(P=\frac{x^2}{x^2+x+1}-\frac{x}{x^2+x+1}+\frac{1}{x^2+x+1}\)

\(P=x^2\cdot\frac{1}{x^2+x+1}-x\cdot\frac{1}{x^2+x+1}+\frac{1}{x^2+x+1}\)

\(P=\frac{1}{x^2+x+1}\left(x^2-x+1\right)\)

\(P=\frac{1}{x^2+x+1}\left[x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\right]\)

\(P=\frac{1}{x^2+x+1}\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)

\(P=\frac{1}{x^2+x+1}\cdot\left(x-\frac{1}{2}\right)^2+\frac{1}{x^2+x+1}\cdot\frac{3}{4}\)

Vì \(\frac{1}{x^2+x+1}\cdot\left(x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow P\ge\frac{1}{x^2+x+1}\cdot\frac{3}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{1}{x^2+x+1}\cdot\left(x-\frac{1}{2}\right)^2\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

Vậy...

10 tháng 2 2019

dễ hơn nè

Ta thấy x2 + x + 1 > 0

Ta có : 2 ( x - 1 )2 \(\ge\)\(\Rightarrow\)2x2 - 4x + 2 \(\ge\)\(\Rightarrow\)3 ( x2 - x + 1 ) \(\ge\)x2 + x + 1

\(\Rightarrow\frac{x^2-x+1}{x^2+x+1}\ge\frac{1}{3}\) . Dấu " = " xảy ra  \(\Leftrightarrow\)x = 1 

6 tháng 3 2021

Xét 2 trường hợp:

TH1  : Nếu x,y trái dấu \(\Rightarrow xy< 0\Rightarrow P=1-xy>1\)

TH2: Nếu x,y cùng dấu \(\Rightarrow\)xy\(\ge0\)  \(\Rightarrow\)có 2 trường hợp xảy ra:

* Nếu xy=0\(\Rightarrow P=1-xy=1\)

* Nếu xy\(\ne0\Rightarrow\) \(xy>0\) 

Áp dụng bđt Cô-si : \(2x^{1006}y^{1006}=x^{2013}+y^{2013}\ge2x^{1006}y^{1006}\sqrt{xy}\Rightarrow\sqrt{xy}\le1\Rightarrow xy\le1\)

\(\Rightarrow-xy\ge-1\) \(\Rightarrow P=1-xy\ge1-1=0\)

Dấu = xảy ra \(\Leftrightarrow x=y=1\)

Vậy gtnn của P=0 \(\Leftrightarrow x=y=1\)

10 tháng 5 2017

Ta có : \(A=\left|2x-1\right|+\left|2x-2013\right|=\left|2x-1\right|+\left|2013-2x\right|\)

\(\Rightarrow A\ge\left|2x-1+2013-2x\right|=\left|2012\right|=2012\)

Dấu "=" xảy ra <=> \(\left(2x-1\right)\left(2013-2x\right)\ge0\Rightarrow\frac{1}{2}\le x\le\frac{2013}{2}\)

Vậy \(A_{min}=2012\) tại \(\frac{1}{2}\le x\le\frac{2013}{2}\)

1 tháng 2 2017

giá trị nhỏ nhất = 1

1 tháng 2 2017

rõ hơn đi bạn

2 tháng 3 2016

Ta có M = |2012 - x| + |2013-x| = |2012 - x|+|x-2013| \(\ge\)|2012-x+x-2013|

                                                                                    =|2012-2013|=|-1|=1

\(\Rightarrow\) Mmin=1

2 tháng 3 2016

Giá trị nhỏ nhất là 1