Cho tam giác ABC M,N lần lượt là trung điểm cảu AB,AC trên tia đối của NM lấy I sao cho IN=MN a)cm tam giác ANI=CNM b) MC=AI và MC song song AI c)MN song song BC và MN=1/2 BC d)đoạn AI lấy E đoạn MC lấy F sao cho AE=CF CM E,N,F thăng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABCQ có
N là trung điểm của AC
N là trung điểm của BQ
Do đó: ABCQ là hình bình hành
Suy ra: AQ//BC và AQ=BC
Xét tứ giác ACBP có
M là trung điểm của AB
M là trung điểm của CP
Do đó: ACBP là hình bình hành
Suy ra: AP//BC và AP=BC
Ta có: AQ//BC
AP//BC
mà AQ,AP có điểm chung là A
nên Q,A,P thẳng hàng
mà AP=AQ
nên A là trung điểm của PQ
b: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC và MN=BC/2
hay MN=PQ/4
=>PQ=4MN
a/ Xét \(\Delta ANM\)và \(\Delta CND\)có :
+) \(MN=ND\left(gt\right).\)
+) \(AN=NC.\)
+) Góc \(ANM\)= Góc \(NCD.\)
\(\Rightarrow\Delta ANM=\Delta CND\left(c.g.c\right).\)
\(\Rightarrow CD=AM.\)
Mà \(AM=BM.\)
\(\Rightarrow CD=BM.\)
b/ Xét \(\Delta ABC\)có \(M,N\)lần lượt là trung điểm của \(AB,AC.\)
\(\Rightarrow MN\)là đường trung bình của \(\Delta ABC.\)
\(\Rightarrow MN//BC\)và \(MN=\frac{1}{2}BC.\)
c/ Ta có \(MN=\frac{1}{2}BC.\)
\(\Rightarrow2MN=BC.\)
\(\Leftrightarrow MD=BC.\)
Xét tứ giác \(BMDC\)có \(MD=BC\)và \(MD//BC.\)
\(\Rightarrow\)Tứ giác \(BMDC\)là hình bình hành.
\(\Rightarrow MC\)và \(BD\)là hai đường chéo của hình bình hành \(BMDC.\)
\(\Rightarrow BD\)đi qua trung điểm của đoạn thẳng \(MC.\)
#Riin
a: Xet tứ giác ABCD có
N là trung điểm chung của AC và BD
=>ABCD là hình bình hành
=>AD=BC
b: Xét tứ giác ACBE có
M là trung điểm chung của AB và CE
=>ACBE là hình bình hành
=>AE//BC
a) Xét ΔANI và ΔCNM có
AN=CN(N là trung điểm của AC)
\(\widehat{ANI}=\widehat{CNM}\)(hai góc đối đỉnh)
NI=NM(gt)
Do đó: ΔANI=ΔCNM(c-g-c)
b) Ta có: ΔANI=ΔCNM(cmt)
nên AI=MC(hai cạnh tương ứng)
Ta có: ΔANI=ΔCNM(cmt)
nên \(\widehat{IAN}=\widehat{MCN}\)(hai góc tương ứng)
mà \(\widehat{IAN}\) và \(\widehat{MCN}\) là hai góc ở vị trí so le trong
nên MC//AI(Dấu hiệu nhận biết hai đường thẳng song song)
c) Xét ΔABC có
M là trung điểm của AB(gt)
N là trung điểm của AC(gt)
Do đó: MN là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
hay MN//BC và \(MN=\dfrac{1}{2}\cdot BC\)(Định lí 2 về đường trung bình của tam giác)
d) Xét ΔANE và ΔCNF có
NA=NC(N là trung điểm của AC)
\(\widehat{EAN}=\widehat{FCN}\)(cmt)
AE=CF(gt)
Do đó: ΔANE=ΔCNF(c-g-c)
hay \(\widehat{ANE}=\widehat{CNF}\)(hai góc tương ứng)
mà \(\widehat{ANE}+\widehat{ENC}=180^0\)(hai góc kề bù)
nên \(\widehat{CNF}+\widehat{CNE}=180^0\)
\(\Leftrightarrow\widehat{FNE}=180^0\)
hay E,N,F thẳng hàng(đpcm)
Thanks bn nha