chứng minh rằng :
a,2n+11...........1 chia hết cho 3 (n chữ số 1)
b,10^n+18n-1chia hết cho 27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta thấy 11..11 có tổng các chữ số là n.Ta có:
2n+11...1=2n+n=3n chia hết cho 3
b, 10n-1-9+27n
=99...9 - 9n+27n
=9.(11...1 - n) +27 chia hết cho 27
d) \(10^n+72n-1\)\(=100...0-1+72n\)
=\(999...9-9n+81n\)
n chữ số 9
=\(9.\left(111...1-n\right)+81n\)
VÌ 1 số và tổng các chữ số có cùng số dư trong phép chia cho 9 => 111...1 - n chia hết 9
mà 81n chia hết 9 => 10n + 72n -1 chia hết 9
b) \(10^n+18n-1\)
<=> \(100..0+\left(27n-9n\right)-1\)chia hết \(27\)
n
<=> \(\left(100...0-1-9n\right)+27n\)chia hết \(27\)
n
<=> \(\left(99...9-9n\right)+27n\)chia hết \(27\)
n
<=> \(9.\left(11..1-n\right)+27n\)chia hết \(27\)
<=> \(9.9k+27n\)chia hết \(27\)
<=> \(81k+27n\)chia hết \(27\)
a) Nếu n chia hết cho 3 thì tổng của 111...111 ( n chữ số 1 ) là 1 + 1 + 1 + ... + 1 + 1 + 1 ( 3n chữ số 1 ) chia hết cho 3
Nếu n chia 3 dư 1 thì 1 + 1 + 1 + ... + 1 + 1 + 1 ( 3n + 1 chữ số 1 ) chia 3 dư 1 nhưng 2n chia 3 dư 2
Nếu n chia 2 dư 1 thì 1 + 1 + 1 + ... + 1 + 1 + 1 ( 3n + 2 chữ số 1 ) chia 3 dư 1 nhưng 2n chia 3 dư 1
Vậy dù n chia 3 dư mấy thì 2n + 111...111 ( n chữ số 1 ) luôn chia hết cho 3 ( đpcm )
a) 2n + 111...1 = 3n + (111..1 - n)
n chữ số n chữ số
Vì 1 số và tổng các chữ của nó có cùng số dư trong phép chia cho 3 => 111...1 - n chia hết cho 3
Mà 3n chia hết cho 3 => 2n + 111...1 chia hết cho 3
n chữ số
b) 10n + 18n - 1
= 100...0 - 1 - 9n + 27n
n chữ số 0
= 999...9 - 9n + 27
n chữ số 9
= 9.(111..1 - n) + 27n
n chữ số 1
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 => 111...1 - n chia hết cho 3
=> 9.(111...1 - n) chia hết cho 27; 27n chia hết cho 27
=> 10n + 18n - 1 chia hết cho 27
c) 10n + 72n - 1
= 100...0 - 1 + 72n
n chữ số 1
= 999...9 - 9n + 81n
n chữ số 9
= 9.(111...1 - n) + 81n
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9 => 111...1 - n chia hết cho 9
Típ theo lm tương tự câu trên