K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2021

\(ĐK:x+\frac{3}{x}\ge0,x\ne0,x\ne-1\)

\(\sqrt{x+\frac{3}{x}}=\frac{x^2+7}{2\left(x+1\right)}\Leftrightarrow\sqrt{x+\frac{3}{x}}-2=\frac{x^2+7}{2\left(x+1\right)}-2\)\(\Leftrightarrow\frac{x+\frac{3}{x}-4}{\sqrt{x+\frac{3}{x}}+2}=\frac{x^2-4x+3}{2\left(x+1\right)}\)\(\Leftrightarrow\frac{x^2-4x+3}{x\sqrt{x+\frac{3}{x}}+2x}=\frac{x^2-4x+3}{2\left(x+1\right)}\)

\(\Leftrightarrow\left(x^2-4x+3\right)\left(\frac{1}{x\sqrt{x+\frac{3}{x}}+2x}-\frac{1}{2\left(x+1\right)}\right)=0\)\(\Rightarrow\orbr{\begin{cases}x^2-4x+3=0\\x\sqrt{x+\frac{3}{x}}+2x=2\left(x+1\right)\end{cases}}\)

TH1: \(x^2-4x+3=0\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\left(t/m\right)\)

TH2: \(x\sqrt{x+\frac{3}{x}}+2x=2\left(x+1\right)\Leftrightarrow x\sqrt{x+\frac{3}{x}}=2\)\(\Leftrightarrow x^2\left(x+\frac{3}{x}\right)=4\Leftrightarrow x^3+3x-4=0\Leftrightarrow\left(x-1\right)\left(x^2+x+4\right)=0\)

Dễ thấy \(x^2+x+4>0\forall x\inℝ\)nên x - 1 = 0 hay x = 1 (tmđk)

Vậy phương trình có 2 nghiệm là \(\left\{1;3\right\}\)

3 tháng 1 2021

Cái chăm chỉ nhất là bình phương lên đấy :>

\(\sqrt{x+\frac{3}{x}}=\frac{x^2+7}{2\left(x+1\right)}\Leftrightarrow\sqrt{\frac{x^2+3}{x}}=\frac{x^2+7}{2\left(x+1\right)}\)

bình phương 2 vế ta được : 

\(\frac{x^2+3}{x}=\frac{\left(x^2+7\right)^2}{4\left(x+1\right)^2}\)

\(\Leftrightarrow4\left(x+1\right)^2\left(x^2+3\right)=x\left(x^2+7\right)^2\)

\(\Leftrightarrow4x^4+16x^2+8x^3+24x+12=x\left(x^4+14x^2+49\right)\)

\(\Leftrightarrow4x^4+16x^2+8x^3+24x+12=x^5+14x^3+49x\)

Tự làm nốt, bài này có khá nhiều phương pháp giải nhưng đối với con gà như mình thì chỉ có cách làm cần cù bù siêng năng này thôi, bạn thông cảm :< 

4 tháng 9 2016

545rfdff

dsd

4 tháng 9 2016

bai nao cung kho zay bn co bai nao de de thi minh lam duoc chu bai nay thi minh chiu thoi!

chuc bn hoc gioi nha!

9 tháng 10 2019

ĐK: x > 0.

Thêm -2 vào 2 vế ta có:

pt <=> \(\sqrt{x+\frac{3}{x}}-2=\frac{x^2+7}{2\left(x+1\right)}\)

<=> \(\frac{x^2-4x+3}{x\left(\sqrt{x+\frac{3}{x}}+2\right)}=\frac{x^2-4x+3}{2\left(x+1\right)}\)

<=> \(\orbr{\begin{cases}x^2-4x+3=0\left(1\right)\\x\left(\sqrt{x+\frac{3}{x}}+2\right)=2\left(x+1\right)\left(2\right)\end{cases}}\)

(1) <=> x = 1 hoặc x =3 ( đều tm )

(2) <=> \(\sqrt{x^3+3x}=2\)

<=> \(x^3+3x-4=0\)<=> x =1

Vậy x =1 hoặc x =3

16 tháng 6 2020

x=1 hoặc 3 nhé

ĐKXĐ: \(-1\le x\le1\)

Xét \(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left[\left(1+x\right)+\left(1-x\right)+\sqrt{\left(1+x\right)\left(1-x\right)}\right]\)

\(=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)\)

Khi đó phương trình đề trở thành:

\(\sqrt{1+\sqrt{1-x}}\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)=\frac{2+\sqrt{1-x^2}}{3}\)

Vì \(2+\sqrt{1-x^2}>0\)nên ta có thể chia 2 vế cho \(2+\sqrt{1-x^2}\):

\(\Rightarrow\sqrt{1+\sqrt{1-x^2}}\left(\sqrt{1+x}-\sqrt{1-x}\right)=\frac{1}{\sqrt{3}}\),Bình phương 2 vế:

\(\Rightarrow\left(1+\sqrt{1-x^2}\right)\left[\left(1+x\right)+\left(1-x\right)-2\sqrt{\left(1+x\right)\left(1-x\right)}\right]=\frac{1}{3}\)

\(\Leftrightarrow\left(1+\sqrt{1-x^2}\right)\left(2-2\sqrt{1-x^2}\right)=\frac{1}{3}\Leftrightarrow2\left(1+\sqrt{1-x^2}\right)\left(1-\sqrt{1-x^2}\right)=\frac{1}{3}\)\(\Leftrightarrow1-\left(1-x^2\right)=\frac{1}{3}\Leftrightarrow x^2=\frac{1}{6}\Leftrightarrow x=\pm\frac{1}{\sqrt{6}}\)

Ta xét phương trình đề: vế phải luôn không âm vì vậy vế trái phải không âm 

Khi đó \(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}\ge0\Leftrightarrow1+x\ge1-x\Leftrightarrow x\ge0\)

Vậy ta chỉ nhận nghiệm duy nhất là \(x=\frac{1}{\sqrt{6}}\)

18 tháng 11 2019

bài lớp 8 à sao nghe sai sai có chép sai đầu bài ko

18 tháng 11 2019

đề đúng đó bn

12 tháng 2 2020

Đặt \(u=\sqrt{10-x};v=\sqrt{3+x}\)

Phương trình trở thành \(u+v+2uv=17\)

\(\Rightarrow u+v=\sqrt{17}\)

đến đây thì EZ rồi

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \(\sin x = \frac{{\sqrt 3 }}{2}\;\; \Leftrightarrow \sin x = \sin \frac{\pi }{3}\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{3} + k2\pi }\\{x = \pi  - \frac{\pi }{3} + k2\pi }\end{array}} \right.\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{3} + k2\pi }\\{x = \frac{{2\pi }}{3} + k2\pi \;}\end{array}\;} \right.\left( {k \in \mathbb{Z}} \right)\)

b) \(2\cos x =  - \sqrt 2 \;\; \Leftrightarrow \cos x =  - \frac{{\sqrt 2 }}{2}\;\;\; \Leftrightarrow \cos x = \cos \frac{{3\pi }}{4}\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{{3\pi }}{4} + k2\pi }\\{x =  - \frac{{3\pi }}{4} + k2\pi }\end{array}\;\;\left( {k \in \mathbb{Z}} \right)} \right.\)

c) \(\sqrt 3 \;\left( {\tan \frac{x}{2} + {{15}^0}} \right) = 1\;\;\; \Leftrightarrow \tan \left( {\frac{x}{2} + \frac{\pi }{{12}}} \right) = \frac{1}{{\sqrt 3 }}\;\; \Leftrightarrow \tan \left( {\frac{x}{2} + \frac{\pi }{{12}}} \right) = \tan \frac{\pi }{6}\)

\( \Leftrightarrow \frac{x}{2} + \frac{\pi }{{12}} = \frac{\pi }{6} + k\pi \;\;\;\; \Leftrightarrow \frac{x}{2} = \frac{\pi }{{12}} + k\pi \;\;\; \Leftrightarrow x = \frac{\pi }{6} + k\pi \;\left( {k \in \mathbb{Z}} \right)\)

d) \(\cot \left( {2x - 1} \right) = \cot \frac{\pi }{5}\;\;\;\; \Leftrightarrow 2x - 1 = \frac{\pi }{5} + k\pi \;\;\;\; \Leftrightarrow 2x = \frac{\pi }{5} + 1 + k\pi \;\; \Leftrightarrow x = \frac{\pi }{{10}} + \frac{1}{2} + \frac{{k\pi }}{2}\;\;\left( {k \in \mathbb{Z}} \right)\)

27 tháng 4 2020

Điều kiện x>0; y\(\ne\)0

Phương trình thứ nhất của hệ tương đương với:

\(\frac{1}{\sqrt{x}}+\frac{y}{x}=\frac{2\sqrt{x}}{y}+2\Leftrightarrow\sqrt{x}+y^2=2x\sqrt{x}+2xy\Leftrightarrow y^2+y\left(\sqrt{x}-2x\right)-2x\sqrt{x}=0\)

Xem đây là hpt bậc hau theo biến y, ta có:

\(\Delta_x=\left(\sqrt{x}-2x\right)^2+8x\sqrt{x}=x+4x\sqrt{x}+4x^2=\left(\sqrt{x}+2x\right)^2>0\)

Do đó, phương trunhf này có 2 nghiệm là:

\(y_1=\frac{\left(2x-\sqrt{x}\right)-\left(\sqrt{x}+2x\right)}{2}=-\sqrt{x},y_2=\frac{\left(2x-\sqrt{x}\right)+\left(\sqrt{x}+2x\right)}{2}=2x\)

xét 2 trường hopej

-Nếu \(y=-\sqrt{x}\)thay vào phương trình thứ hai của hệ ta được

\(-\sqrt{x}\left(\sqrt{x^2+1}-1\right)=\sqrt{3x^2+3}\)

Dễ thấy: \(-\sqrt{x}\left(\sqrt{x^2+1}-1\right)< 0< \sqrt{3x^2+3}\)nên phương trình này vô nghiệm

Nếu y=2x, thay vào pt thứ 2 của hệ ta được

\(2x\left(\sqrt{x^2+1}-1\right)=\sqrt{3x^2+3}\Leftrightarrow\sqrt{x^2+1}\left(2x-\sqrt{3}\right)=2x\Leftrightarrow\sqrt{x^2+1}=\frac{2x}{2x-\sqrt{3}}\)(*)

(dễ thấy \(x=\frac{\sqrt{3}}{2}\)ktm đẳng thức nên chỉ xét \(x\ne\frac{\sqrt{3}}{2}\)và phép biến đổi trên là phù hợp)

Xét 2 hàm số \(f\left(x\right)=\sqrt{x^2+1},x>0\)và \(g\left(x\right)=\frac{2x}{2x-\sqrt{3}};x>0\)

Ta có \(f'\left(x\right)=\frac{x}{\sqrt{x^2+1}}>0\)nên là hàm đồng biến \(g'\left(x\right)=\frac{-2\sqrt{3}}{\left(2x-\sqrt{3}\right)^2}< 0\)nên là hàm nghịch biến

=> PT (*) không có quá 1 nghiệm

Nhẩm thấy x=\(\sqrt{3}\)thỏa mãn (*) nên đây cũng là nghiệm duy nhất của (*)

Vậy hệ đã cho có nghiệm duy nhất là: \(\left(x;y\right)=\left(\sqrt{3};2\sqrt{3}\right)\)