Giải phương trình: \(\sqrt{x+\frac{3}{x}}=\frac{x^2+7}{2\left(x+1\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: x > 0.
Thêm -2 vào 2 vế ta có:
pt <=> \(\sqrt{x+\frac{3}{x}}-2=\frac{x^2+7}{2\left(x+1\right)}\)
<=> \(\frac{x^2-4x+3}{x\left(\sqrt{x+\frac{3}{x}}+2\right)}=\frac{x^2-4x+3}{2\left(x+1\right)}\)
<=> \(\orbr{\begin{cases}x^2-4x+3=0\left(1\right)\\x\left(\sqrt{x+\frac{3}{x}}+2\right)=2\left(x+1\right)\left(2\right)\end{cases}}\)
(1) <=> x = 1 hoặc x =3 ( đều tm )
(2) <=> \(\sqrt{x^3+3x}=2\)
<=> \(x^3+3x-4=0\)<=> x =1
Vậy x =1 hoặc x =3
ĐKXĐ: \(-1\le x\le1\)
Xét \(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left[\left(1+x\right)+\left(1-x\right)+\sqrt{\left(1+x\right)\left(1-x\right)}\right]\)
\(=\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)\)
Khi đó phương trình đề trở thành:
\(\sqrt{1+\sqrt{1-x}}\left(\sqrt{1+x}-\sqrt{1-x}\right)\left(2+\sqrt{1-x^2}\right)=\frac{2+\sqrt{1-x^2}}{3}\)
Vì \(2+\sqrt{1-x^2}>0\)nên ta có thể chia 2 vế cho \(2+\sqrt{1-x^2}\):
\(\Rightarrow\sqrt{1+\sqrt{1-x^2}}\left(\sqrt{1+x}-\sqrt{1-x}\right)=\frac{1}{\sqrt{3}}\),Bình phương 2 vế:
\(\Rightarrow\left(1+\sqrt{1-x^2}\right)\left[\left(1+x\right)+\left(1-x\right)-2\sqrt{\left(1+x\right)\left(1-x\right)}\right]=\frac{1}{3}\)
\(\Leftrightarrow\left(1+\sqrt{1-x^2}\right)\left(2-2\sqrt{1-x^2}\right)=\frac{1}{3}\Leftrightarrow2\left(1+\sqrt{1-x^2}\right)\left(1-\sqrt{1-x^2}\right)=\frac{1}{3}\)\(\Leftrightarrow1-\left(1-x^2\right)=\frac{1}{3}\Leftrightarrow x^2=\frac{1}{6}\Leftrightarrow x=\pm\frac{1}{\sqrt{6}}\)
Ta xét phương trình đề: vế phải luôn không âm vì vậy vế trái phải không âm
Khi đó \(\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}\ge0\Leftrightarrow1+x\ge1-x\Leftrightarrow x\ge0\)
Vậy ta chỉ nhận nghiệm duy nhất là \(x=\frac{1}{\sqrt{6}}\)
Đặt \(u=\sqrt{10-x};v=\sqrt{3+x}\)
Phương trình trở thành \(u+v+2uv=17\)
\(\Rightarrow u+v=\sqrt{17}\)
đến đây thì EZ rồi
a) \(\sin x = \frac{{\sqrt 3 }}{2}\;\; \Leftrightarrow \sin x = \sin \frac{\pi }{3}\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{3} + k2\pi }\\{x = \pi - \frac{\pi }{3} + k2\pi }\end{array}} \right.\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{3} + k2\pi }\\{x = \frac{{2\pi }}{3} + k2\pi \;}\end{array}\;} \right.\left( {k \in \mathbb{Z}} \right)\)
b) \(2\cos x = - \sqrt 2 \;\; \Leftrightarrow \cos x = - \frac{{\sqrt 2 }}{2}\;\;\; \Leftrightarrow \cos x = \cos \frac{{3\pi }}{4}\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{{3\pi }}{4} + k2\pi }\\{x = - \frac{{3\pi }}{4} + k2\pi }\end{array}\;\;\left( {k \in \mathbb{Z}} \right)} \right.\)
c) \(\sqrt 3 \;\left( {\tan \frac{x}{2} + {{15}^0}} \right) = 1\;\;\; \Leftrightarrow \tan \left( {\frac{x}{2} + \frac{\pi }{{12}}} \right) = \frac{1}{{\sqrt 3 }}\;\; \Leftrightarrow \tan \left( {\frac{x}{2} + \frac{\pi }{{12}}} \right) = \tan \frac{\pi }{6}\)
\( \Leftrightarrow \frac{x}{2} + \frac{\pi }{{12}} = \frac{\pi }{6} + k\pi \;\;\;\; \Leftrightarrow \frac{x}{2} = \frac{\pi }{{12}} + k\pi \;\;\; \Leftrightarrow x = \frac{\pi }{6} + k\pi \;\left( {k \in \mathbb{Z}} \right)\)
d) \(\cot \left( {2x - 1} \right) = \cot \frac{\pi }{5}\;\;\;\; \Leftrightarrow 2x - 1 = \frac{\pi }{5} + k\pi \;\;\;\; \Leftrightarrow 2x = \frac{\pi }{5} + 1 + k\pi \;\; \Leftrightarrow x = \frac{\pi }{{10}} + \frac{1}{2} + \frac{{k\pi }}{2}\;\;\left( {k \in \mathbb{Z}} \right)\)
Điều kiện x>0; y\(\ne\)0
Phương trình thứ nhất của hệ tương đương với:
\(\frac{1}{\sqrt{x}}+\frac{y}{x}=\frac{2\sqrt{x}}{y}+2\Leftrightarrow\sqrt{x}+y^2=2x\sqrt{x}+2xy\Leftrightarrow y^2+y\left(\sqrt{x}-2x\right)-2x\sqrt{x}=0\)
Xem đây là hpt bậc hau theo biến y, ta có:
\(\Delta_x=\left(\sqrt{x}-2x\right)^2+8x\sqrt{x}=x+4x\sqrt{x}+4x^2=\left(\sqrt{x}+2x\right)^2>0\)
Do đó, phương trunhf này có 2 nghiệm là:
\(y_1=\frac{\left(2x-\sqrt{x}\right)-\left(\sqrt{x}+2x\right)}{2}=-\sqrt{x},y_2=\frac{\left(2x-\sqrt{x}\right)+\left(\sqrt{x}+2x\right)}{2}=2x\)
xét 2 trường hopej
-Nếu \(y=-\sqrt{x}\)thay vào phương trình thứ hai của hệ ta được
\(-\sqrt{x}\left(\sqrt{x^2+1}-1\right)=\sqrt{3x^2+3}\)
Dễ thấy: \(-\sqrt{x}\left(\sqrt{x^2+1}-1\right)< 0< \sqrt{3x^2+3}\)nên phương trình này vô nghiệm
Nếu y=2x, thay vào pt thứ 2 của hệ ta được
\(2x\left(\sqrt{x^2+1}-1\right)=\sqrt{3x^2+3}\Leftrightarrow\sqrt{x^2+1}\left(2x-\sqrt{3}\right)=2x\Leftrightarrow\sqrt{x^2+1}=\frac{2x}{2x-\sqrt{3}}\)(*)
(dễ thấy \(x=\frac{\sqrt{3}}{2}\)ktm đẳng thức nên chỉ xét \(x\ne\frac{\sqrt{3}}{2}\)và phép biến đổi trên là phù hợp)
Xét 2 hàm số \(f\left(x\right)=\sqrt{x^2+1},x>0\)và \(g\left(x\right)=\frac{2x}{2x-\sqrt{3}};x>0\)
Ta có \(f'\left(x\right)=\frac{x}{\sqrt{x^2+1}}>0\)nên là hàm đồng biến \(g'\left(x\right)=\frac{-2\sqrt{3}}{\left(2x-\sqrt{3}\right)^2}< 0\)nên là hàm nghịch biến
=> PT (*) không có quá 1 nghiệm
Nhẩm thấy x=\(\sqrt{3}\)thỏa mãn (*) nên đây cũng là nghiệm duy nhất của (*)
Vậy hệ đã cho có nghiệm duy nhất là: \(\left(x;y\right)=\left(\sqrt{3};2\sqrt{3}\right)\)
\(ĐK:x+\frac{3}{x}\ge0,x\ne0,x\ne-1\)
\(\sqrt{x+\frac{3}{x}}=\frac{x^2+7}{2\left(x+1\right)}\Leftrightarrow\sqrt{x+\frac{3}{x}}-2=\frac{x^2+7}{2\left(x+1\right)}-2\)\(\Leftrightarrow\frac{x+\frac{3}{x}-4}{\sqrt{x+\frac{3}{x}}+2}=\frac{x^2-4x+3}{2\left(x+1\right)}\)\(\Leftrightarrow\frac{x^2-4x+3}{x\sqrt{x+\frac{3}{x}}+2x}=\frac{x^2-4x+3}{2\left(x+1\right)}\)
\(\Leftrightarrow\left(x^2-4x+3\right)\left(\frac{1}{x\sqrt{x+\frac{3}{x}}+2x}-\frac{1}{2\left(x+1\right)}\right)=0\)\(\Rightarrow\orbr{\begin{cases}x^2-4x+3=0\\x\sqrt{x+\frac{3}{x}}+2x=2\left(x+1\right)\end{cases}}\)
TH1: \(x^2-4x+3=0\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\left(t/m\right)\)
TH2: \(x\sqrt{x+\frac{3}{x}}+2x=2\left(x+1\right)\Leftrightarrow x\sqrt{x+\frac{3}{x}}=2\)\(\Leftrightarrow x^2\left(x+\frac{3}{x}\right)=4\Leftrightarrow x^3+3x-4=0\Leftrightarrow\left(x-1\right)\left(x^2+x+4\right)=0\)
Dễ thấy \(x^2+x+4>0\forall x\inℝ\)nên x - 1 = 0 hay x = 1 (tmđk)
Vậy phương trình có 2 nghiệm là \(\left\{1;3\right\}\)
Cái chăm chỉ nhất là bình phương lên đấy :>
\(\sqrt{x+\frac{3}{x}}=\frac{x^2+7}{2\left(x+1\right)}\Leftrightarrow\sqrt{\frac{x^2+3}{x}}=\frac{x^2+7}{2\left(x+1\right)}\)
bình phương 2 vế ta được :
\(\frac{x^2+3}{x}=\frac{\left(x^2+7\right)^2}{4\left(x+1\right)^2}\)
\(\Leftrightarrow4\left(x+1\right)^2\left(x^2+3\right)=x\left(x^2+7\right)^2\)
\(\Leftrightarrow4x^4+16x^2+8x^3+24x+12=x\left(x^4+14x^2+49\right)\)
\(\Leftrightarrow4x^4+16x^2+8x^3+24x+12=x^5+14x^3+49x\)
Tự làm nốt, bài này có khá nhiều phương pháp giải nhưng đối với con gà như mình thì chỉ có cách làm cần cù bù siêng năng này thôi, bạn thông cảm :<