1) Cho hinh thang ABCD vuong tai A, D co AB = a, AD = 2a va CD = 3a. Goi M,N lan luot la trung diem cua cac canh AD va DC. Khi do /2 vecto AM + 1/2 vecto DC/ bang :
A. \(\dfrac{5a}{2}\) B. 5a C. 3a D.\(\dfrac{3a}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(|2\overrightarrow{AM}+\frac{1}{2}\overrightarrow{DC}|=|\overrightarrow{AD}+\overrightarrow{DN}|=|\overrightarrow{AN}|=AN\)
Áp dụng định lý Pitago cho tam giác $ADN$ vuông tại $D$ ta có:
\(AN=\sqrt{AD^2+DN^2}=\sqrt{(2a)^2+(\frac{3a}{2})^2}=\frac{5}{2}a\)
Đáp án A
Hình vẽ: