tim GTNN cua bieu thuc x^4-4x^3+12x^2-16x+16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=4x^2+12x+9-1\)
<=> \(A=\left(2x+3\right)^2-1\)
<=> \(A=\left(2x+3-1\right)\left(2x+3+1\right)\)
<=> \(A=\left(2x+2\right)\left(2x+4\right)\)
<=> \(A=4\left(x+1\right)\left(x+2\right)\ge4.1.2=8\)
Vậy Amin = 8 khi x=0
trần gia bảo bái phục bái phục!
Lời giải
Tự c/m: \(\left(a+b\right)^2=a^2+2ab+b^2\) (phân tích thành (a+b) . (a+b) rồi phá tung cái ngoặc ra)
Ta có: \(A=4\left(x^2+3x+2\right)\) (đặt thừa số chung)
\(=4\left[x^2+2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+2\right]\)
\(=4\left[\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\right]=4\left(x+\frac{3}{2}\right)^2-1\ge-1\) (do \(\left(x+\frac{3}{2}\right)^2\ge0\))
Dấu "=" xảy ra khi x + 3/2 = 0 tức là x = -3/2
Vậy Min (GTNN) A = -1 khi và chỉ khi x = -3/2
Đặt \(A=x^2-4x+3\)
\(=x^2-2.x.2+4-1\)
\(=\left(x-2\right)^2-1\)
Vì \(\left(x-2\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x-2\right)^2-1\ge-1;\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\)
Vậy MIN A=-1 \(\Leftrightarrow x=2\)
= \(x^2-4x+4-1\)
= \(\left(x-2\right)^2-1\ge-1\)
GTNN của biểu thức là -1 khi x=2
1)
a)
\(\sqrt{11-6\sqrt{2}}=\sqrt{2-2.3.\sqrt{2}+9}=\left|\sqrt{2}-3\right|=3-\sqrt{2}\)
\(A=3-\sqrt{2}+3+\sqrt{2}=6\)
b)
\(B^2=24+2\sqrt{12^2-4.11}=24+2\sqrt{100}=24+20=44\)
\(B=\sqrt{44}=2\sqrt{11}\)