K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2021

a: Xét ΔAHD có

M là trung điểm của HA

N là trung điểm của HD

Do đó: MN là đường trung bình của ΔAHD

Suy ra: MN//AD

16 tháng 10 2016

a) Xét tam giác AHD, có: 
* M,N lần lượt là trung điểm của AH, DH (gt)
=> MN là đường trung bình của tam giác AHD
=> MN // AD (t/c) (đpcm)

b) Ta có: BC // AD (ABCD là hình chữ nhật)
=> MN // BI (I thuộc BC) (1)

Ta lại có: I là trung điểm BC (gt)
=> BI = AD : 2 (BC = AD)
Mà MN = AD :2 (MN là đường trung bình tam giác AHD)
=> BI = MN (2)

Từ (1), (2) => MBIN là hình bình hành (đpcm)

c) Xét tam giác AHN vuông tại N có:
* NM là trung tuyến (M là trung điểm AH)
=> NM = MA = MH (hệ quả)
=> tam giác AMN là tam giác cân tại M
Mà MB là đường nối từ đỉnh của tam giác cân AMN
=> MB là đường cao của tam giác AMN
=> góc AMB = 90 độ
=> AD vuông góc với MB
Mà MB // ID (MDIB là hình bình hành)
=> ID vuông góc với AD
=> góc ANI = 90 độ

P/S: Không chắc câu c) cho lắm.
 

15 tháng 7 2021

khó quá !!!!!!!!!!!!!!1

Giải chi tiết:

a) Xét tam giác AHD có:

M là trung điểm của AH (gt) 

N là trung điểm của DH (gt) 

Do đó MN là đường trung bình của tam giác AHD

Suy ra MN//AD (tính chất) (đpcm)

b) Ta có MN//AD, mà AD//BC (2 cạnh đối hình chữ nhật)  nên MN//BC hay MN//BI     Vì MN = 1212AD (tính chất đường trung bình của tam giác)    và BI = IC = 1212BC (do gt),  mà AD = BC (2 cạnh đối hình chữ nhật)  MN = BI BC hay MN//BI   Xét tứ giác BMNI có MN//BI, MN = BI (c/m trên)    Suy ra tứ giác BMNI là hình bình hành (đpcm)  

c) Ta có MN//AD và AD⊥⊥AB nên MN⊥⊥AB

Tam giác ABN có 2 đường cao là AH và NM cắt nhau tại M nên M là trực tâm của tam giác ABN. Suy ra BM⊥⊥AN.

Mà BM//IN nên AN⊥⊥NI hay ΔANIΔANI  vuông tại N (đpcm)   

# M̤̮èO̤̮×͜×L̤̮ườI̤̮◇

17 tháng 9 2019

A B C D H M N I

Xét tam giác AHD có :

M là trung điểm của AH ( gt )

N là trung điểm của DH ( gt )

Do đó MN là đường trung bình của tam giác AHD 

Suy ra MN // AD ( tính chất ) ( đpcm)

b ) Ta có MN // CD , mà AD // BC ( 2 cạnh đối hình chữ nhật )

nên MN // BC hay MN // BI 

Vì MN = \(\frac{1}{2}\) AD ( tính chất đường trung bình của tam giác )

và BI = IC = \(\frac{1}{2}\)BC ( do gt )

mà AD = BC ( 2 cạnh đối hình chữ nhật )

MN = BI BC hay MN // BI

Xét tứ giác BMNI có MN // BI  , MN = BI ( c/m trên )

\(\Rightarrow\) tứ giác  BMNI là hình bình hành ( đpcm)

c ) Ta có MN // AD và \(AD\perp AB\) nên \(MN\perp AB\)

Tam giác ABN có 2 đường cao là AH và NM cắt nhau tại M nên M là trực tâm của tam giác ABN . Suy ra \(BM\perp AN\) 

Mà BM // IN nên \(AN\perp NI\) hay tam giác ANI vuông tại N ( đpcm )

Chúc bạn học tốt !!!

4 tháng 11 2021

Gút chóp iem nhưng kudo thì vẫn mãi là kudo tao là Sherlock Holmes cơ kémmmmm nonnnn xanhhhh

20 tháng 12 2021

a) Diện tích hình chữ ABCD là:

S = AB . BC = 12 . 7 = 84 (cm2).

20 tháng 12 2021

a: \(S=84cm^2\)

a) Xét ΔABC có

E là trung điểm của AB(gt)

F là trung điểm của BC(gt)

Do đó: EF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒EF//AC và \(EF=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔADC có

H là trung điểm của AD(gt)

G là trung điểm của CD(gt)

Do đó: HG là đường trung bình của ΔADC(Định nghĩa đường trung bình của tam giác)

⇒HG//AC và \(HG=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra HG//EF và HG=EF

Xét ΔABD có 

E là trung điểm của AB(gt)

H là trung điểm của AD(gt)

Do đó: EH là đường trung bình của ΔABD(Định nghĩa đường trung bình của tam giác)

⇒EH//BD và \(EH=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)

Ta có: EH//BD(cmt)

BD⊥AC(gt)

Do đó: EH⊥AC(Định lí 2 từ vuông góc tới song song)

Ta có: HG//AC(cmt)

EH⊥AC(Cmt)

Do đó: HG⊥HE(Định lí 2 từ vuông góc tới song song)

hay \(\widehat{EHG}=90^0\)

Xét tứ giác EHGF có 

HG//EF(cmt)

HG=FE(cmt)

Do đó: EHGF là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành EHGF có \(\widehat{EHG}=90^0\)(cmt)

nên EHGF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Ta có: EFGH là hình chữ nhật(cmt)

nên \(S_{EFGH}=EF\cdot EH\)

\(\Leftrightarrow S_{EFGH}=\dfrac{AC}{2}\cdot\dfrac{BD}{2}=\dfrac{10}{2}\cdot\dfrac{8}{2}=5\cdot4=20cm^2\)

Vậy: Diện tích tứ giác EFGH khi AC=10cm và BD=8cm là 20cm2

c) Hình chữ nhật EFGH trở thành hình vuông khi EH=HG

hay AC=BD

Vậy: Khi tứ giác ABCD có thêm điều kiện AC=BD thì EFGH trở thành hình vuông

a: Xét ΔHAD có HM/HA=HN/HD

nên MN//AD

 b: Xét ΔHAD có MN//AD

nên MN/AD=HM/HA=1/2

=>MN=1/2AD=1/2BC

=>MN=BI

mà MN//BI

nên BMNI là hình bình hành