giải phương trình
\(\sqrt{4x-5}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
\(\sqrt{4x-20}\) + 3\(\sqrt{\frac{x-5}{9}}\) - \(\frac{1}{3}\)\(\sqrt{9x-45}\)= 4
\(\Leftrightarrow\)\(\sqrt{4\left(x-5\right)}\) + 3\(\frac{\sqrt{x-5}}{\sqrt{9}}\)-\(\frac{1}{3}\)\(\sqrt{9\left(x-5\right)}\)=4
\(\Leftrightarrow\)\(\sqrt{4}\)\(\sqrt{x-5}\)+ 3\(\frac{\sqrt{x-5}}{3}\)-\(\frac{1}{3}\)\(\sqrt{9}\)\(\sqrt{x-5}\)= 4
\(\Leftrightarrow\)2\(\sqrt{x-5}\)+ 1\(\sqrt{x-5}\)-1\(\sqrt{x-5}\)=4
\(\Leftrightarrow\)( 2 + 1 - 1)\(\sqrt{x-5}\)= 4
\(\Leftrightarrow\)2\(\sqrt{x-5}\)= 4
\(\Leftrightarrow\)\(\sqrt{x-5}\)= 2 . Đk : x \(\ge\)5
\(\Rightarrow\)x - 5 = 4
\(\Leftrightarrow\)x = 9 ( thỏa mãn )
Vậy phương trình đã cho có tập nghiệm S = \(\left\{9\right\}\)
Ta có : \(\sqrt{x-5}-\sqrt{4x-20}-\frac{1}{5}.\sqrt{9x-45}=3\)
\(\Leftrightarrow\sqrt{x-5}+\sqrt{4\left(x-5\right)}-\frac{1}{5}\sqrt{9\left(x-5\right)}=3\)
\(\Leftrightarrow\sqrt{x-5}+2\sqrt{x-5}-\frac{3}{5}\sqrt{x-5}=3\left(^∗\right)\)
Đặt \(\sqrt{x-5}=t,\hept{\begin{cases}t>0\\x\ge5\end{cases}}\)
Từ (*) ta có : \(t+2t+\frac{-3}{5}t=3\)
\(\Leftrightarrow5t+10t-3t=15\)
\(\Leftrightarrow t=\frac{5}{4}\left(t/m\right)\)
\(\Leftrightarrow\sqrt{x-5}=\frac{5}{4}\)
\(\Leftrightarrow x-5=\frac{25}{16}\)
\(\Leftrightarrow x=\frac{105}{16}\)
Nghiệm cuối của phương trình là : \(\left\{\frac{105}{16}\right\}\)
1.a) \(\sqrt{x^2-4}-\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}-\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{x-2}.\sqrt{x+2}-\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{x-2}.\left(\sqrt{x+2}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}=0\\\sqrt{x+2}-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\\sqrt{x+2}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x+2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
Vậy x=2 hoặc x=-1
a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow-2\sqrt{x-1}=-2\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)
\(\Leftrightarrow x=2\left(tm\right)\)
b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))
\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}=16\)
\(\Leftrightarrow\sqrt{x+1}=4\)
\(\Leftrightarrow x+1=16\)
\(\Leftrightarrow x=15\left(tm\right)\)
ĐK: \(x\ge0\)\(4\sqrt{x}-2\sqrt{9x}+16\sqrt{x}=5\) 5 (=) \(\sqrt{x}\left(4-2\sqrt{9}+16\right)=5\) (=) \(\sqrt{x}.14=5\)(=) x=\(\frac{25}{196}\)
ĐK: \(x\ge-5\)PT(=) \(\sqrt{5+x}\left(\sqrt{4}-3+\frac{4}{3}.3\right)=6\) (=) \(\sqrt{5+x}.3=6\) (=)\(\sqrt{5+x}=2\)(=) X = -1 (nhận)
a) \(\sqrt{\left(2x-1\right)^2}=3\)
⇔ \(\left|2x-1\right|=3\)
⇔ \(\orbr{\begin{cases}2x-1=3\\2x-1=-3\end{cases}}\)
⇔ \(\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
b) \(3\sqrt{x}-2\sqrt{9x}+\sqrt{16x}=5\)
ĐKXĐ : \(x\ge0\)
⇔ \(3\sqrt{x}-2\sqrt{3^2x}+\sqrt{4^2x}=5\)
⇔ \(3\sqrt{x}-2\cdot3\sqrt{x}+4\sqrt{x}=5\)
⇔ \(7\sqrt{x}-6\sqrt{x}=5\)
⇔ \(\sqrt{x}=5\)
⇔ \(x=25\)( tm )
c) \(\sqrt{4x+20}-3\sqrt{5+x}+\frac{3}{4}\sqrt{9x+45}=6\)
ĐKXĐ : \(x\ge-5\)
⇔ \(\sqrt{2^2\left(x+5\right)}-3\sqrt{x+5}+\frac{3}{4}\sqrt{3^2\left(x+5\right)}=6\)
⇔ \(2\sqrt{x+5}-3\sqrt{x+5}+\frac{3}{4}\cdot3\sqrt{x+5}=6\)
⇔ \(-\sqrt{x+5}+\frac{9}{4}\sqrt{x+5}=6\)
⇔ \(\frac{5}{4}\sqrt{x+5}=6\)
⇔ \(\sqrt{x+5}=\frac{24}{5}\)
⇔ \(x+5=\frac{576}{25}\)
⇔ \(x=\frac{451}{25}\left(tm\right)\)
k) ĐK: $x^2\geq 5$
PT $\Leftrightarrow 2\sqrt{x^2-5}-\frac{1}{3}\sqrt{x^2-5}+\frac{3}{4}\sqrt{x^2-5}-\frac{5}{12}\sqrt{x^2-5}=4$
$\Leftrightarrow 2\sqrt{x^2-5}=4$
$\Leftrightarrow \sqrt{x^2-5}=2$
$\Rightarrow x^2-5=4$
$\Leftrightarrow x^2=9\Rightarrow x=\pm 3$ (đều thỏa mãn)
l) ĐKXĐ: $x\geq -1$
PT $\Leftrightarrow 2\sqrt{x+1}+3\sqrt{x+1}-\sqrt{x+1}=4$
$\Leftrightarrow 4\sqrt{x+1}=4$
$\Leftrightarrow \sqrt{x+1}=1$
$\Rightarrow x+1=1$
$\Rightarrow x=0$
m)
ĐKXĐ: $x\geq -1$
PT $\Leftrightarrow 4\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}+3\sqrt{x+1}$
$\Leftrightarrow 6\sqrt{x+1}=16+2\sqrt{x+1}$
$\Leftrightarrow 4\sqrt{x+1}=16$
$\Leftrightarrow \sqrt{x+1}=4$
$\Rightarrow x=15$ (thỏa mãn)
h)
ĐKXĐ: $x\geq -5$
PT $\Leftrightarrow \sqrt{x+5}=6$
$\Rightarrow x+5=36\Rightarrow x=31$ (thỏa mãn)
i) ĐKXĐ: $x\geq 5$
PT \(\Leftrightarrow \sqrt{x-5}+4\sqrt{x-5}-\sqrt{x-5}=12\)
\(\Leftrightarrow 4\sqrt{x-5}=12\Leftrightarrow \sqrt{x-5}=3\Rightarrow x-5=9\Rightarrow x=14\) (thỏa mãn)
j)
ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow 3\sqrt{2x}+\sqrt{2x}-6\sqrt{2x}+4=0$
$\Leftrightarrow -2\sqrt{2x}+4=0$
$\Leftrightarrow \sqrt{2x}=2$
$\Rightarrow x=2$ (thỏa mãn)
a: ĐKXĐ: x>=3
Sửa đề: \(\sqrt{4x-12}-\sqrt{9x-27}+\sqrt{\dfrac{25x-75}{4}}-3=0\)
=>\(2\sqrt{x-3}-3\sqrt{x-3}+\dfrac{5}{2}\sqrt{x-3}-3=0\)
=>\(\dfrac{3}{2}\sqrt{x-3}=3\)
=>\(\sqrt{x-3}=2\)
=>x-3=4
=>x=7(nhận)
b: ĐKXĐ: x>=0
\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< =-\dfrac{3}{4}\)
=>\(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}+\dfrac{3}{4}< =0\)
=>\(\dfrac{4\sqrt{x}-8+3\sqrt{x}+3}{4\left(\sqrt{x}+1\right)}< =0\)
=>\(7\sqrt{x}-5< =0\)
=>\(\sqrt{x}< =\dfrac{5}{7}\)
=>0<=x<=25/49
c: ĐKXĐ: x>=5
\(\sqrt{9x-45}-14\sqrt{\dfrac{x-5}{49}}+\dfrac{1}{4}\sqrt{4x-20}=3\)
=>\(3\sqrt{x-5}-14\cdot\dfrac{\sqrt{x-5}}{7}+\dfrac{1}{4}\cdot2\cdot\sqrt{x-5}=3\)
=>\(\dfrac{3}{2}\sqrt{x-5}=3\)
=>\(\sqrt{x-5}=2\)
=>x-5=4
=>x=9(nhận)
\(\sqrt{4x-5}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)
ĐKXĐ : x ≥ 5
<=> \(\sqrt{4x-5}+3\sqrt{\left(\frac{1}{3}\right)^2\cdot\left(x-5\right)}-\frac{1}{3}\sqrt{3^2\left(x-5\right)}=4\)
<=> \(\sqrt{4x-5}+3\cdot\left|\frac{1}{3}\right|\sqrt{x-5}-\frac{1}{3}\cdot\left|3\right|\sqrt{x-5}=4\)
<=> \(\sqrt{4x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
<=> \(\sqrt{4x-5}=4\)
<=> \(4x-5=16\)
<=> \(4x=21\)
<=> \(x=\frac{21}{4}\)( tmđk )
đk: \(x\ge5\)
Ta có: \(\sqrt{4x-5}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)
\(\Leftrightarrow\sqrt{4x-5}+3\cdot\frac{1}{3}\sqrt{x-5}-\frac{1}{3}\cdot3\sqrt{x-5}=4\)
\(\Leftrightarrow\sqrt{4x-5}=4\)
\(\Leftrightarrow4x-5=16\)
\(\Leftrightarrow4x=21\)
\(\Rightarrow x=\frac{21}{4}\left(tm\right)\)
Vậy \(x=\frac{21}{4}\)