cho đoạn thẳng d1 y=3x-5 và d2 y=4x-9 cắt nhau tại m. tìm hàm số bậc 2 y=3x^2+bx+c có đồ thị đi qua A(-2;1) và M
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có phương trình hoành độ giao điểm của d 1 v à d 2 : m 2 x + 1 = 3 x − 2 ( * )
Để hai đường thẳng d 1 v à d 2 cắt nhau tại một điểm có hoành độ x = − 1 t h ì x = − 1 thỏa mãn phương trình (*)
Suy ra m 2 . ( − 1 ) + 1 = 3 . ( − 1 ) – 2 ⇔ - m 2 + 1 = − 5 ⇔ - m 2 = − 6 ⇔ m = 12
Đáp án cần chọn là: B
Tọa độ I là nghiệm của hệ pt: \(\left\{{}\begin{matrix}y=4x+7\\y=1-2x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}0=6x+6\\y=1-2x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1-2\left(-1\right)=3\end{matrix}\right.\)
\(\Rightarrow\) I(-1;3)
\(I\in\left(d3\right)\Rightarrow3=\left(m+1\right)\left(-1\right)+2m-1\)
\(\Leftrightarrow m=5\)
Vậy....
bài 1: d1 cắt d2 tại 1 điểm trên trục tung => \(a\ne a';b=b'\)
<=> \(m\ne3\)và \(5-m=m-1\Leftrightarrow2m=6\Leftrightarrow m=3\)(k t/m dk) => k có m thỏa mãn để d1 cắt d2 tại 1 điểm trên trục tung.
bài 2:ĐK: m khác -1
hoành độ giao điểm A là nghiệm của pt:
\(\left(m+1\right)x^2=3x+1\Leftrightarrow\left(m+1\right)x^2-3x+1=0\)(1)
tại 1 điểm có hoành độ =2 => thay x=2 vào pt (1) ta có: \(4\left(m+1\right)-6+1=0\Leftrightarrow4m+4-6+1=0\Leftrightarrow4m=1\Leftrightarrow m=\frac{1}{4}\)(t/m đk)
=> 2 đồ thị cắt nhau tại.... bằng 2 <=> m=1/4
a)
đường thẳng (d1) song song với đường thẳng (d2) khi :
a = a' và b khác b'
suy ra :
\(m-1=3\) \(\Leftrightarrow m=4\)
vậy đường thẳng (d1) song song với đường thẳng (d2) khi m = 4
Pt tọa độ giao điểm d1 và d2:
\(\left\{{}\begin{matrix}y=3x-5\\y=4x-9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x-y=5\\4x-y=9\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=4\\y=7\end{matrix}\right.\)
\(\Rightarrow M\left(4;7\right)\)
Do đồ thị hàm bậc 2 đã cho qua A và M nên ta có:
\(\left\{{}\begin{matrix}3.\left(-2\right)^2+\left(-2\right)b+c=1\\3.4^2+4b+c=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2b+c=-11\\4b+c=-41\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=-5\\c=-21\end{matrix}\right.\)
\(\Rightarrow y=x^2-5x-21\)