K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2016

Ý a mình làm được rồi nhưng k chắc chắn :)

14 tháng 1 2016

ý a chứng minh IF , IE cùng bằng IC là ra

a: Xét (O) có

ΔABC nội tiếp

AB là đường kính

Do đó: ΔABC vuông tại C

=>BC\(\perp\)AC tại C

=>BC\(\perp\)AE tại C

=>ΔCEF vuông tại C

Xét (O) có

\(\widehat{ICB}\) là góc tạo bởi tiếp tuyến CI và dây cung CB

\(\widehat{CAB}\) là góc nội tiếp chắn cung CB

Do đó: \(\widehat{ICB}=\widehat{CAB}\)

mà \(\widehat{CAB}=\widehat{BFD}\left(=90^0-\widehat{CBA}\right)\)

nên \(\widehat{ICB}=\widehat{BFD}\)

mà \(\widehat{BFD}=\widehat{IFC}\)(hai góc đối đỉnh)

nên \(\widehat{ICB}=\widehat{IFC}\)

=>\(\widehat{ICF}=\widehat{IFC}\)

=>IC=IF

Ta có: \(\widehat{ICF}+\widehat{ICE}=\widehat{ECF}=90^0\)

\(\widehat{IFC}+\widehat{IEC}=90^0\)(ΔECF vuông tại C)

mà \(\widehat{ICF}=\widehat{IFC}\)

nên \(\widehat{ICE}=\widehat{IEC}\)

=>IC=IE

mà IC=IF

nên IE=IF

=>I là trung điểm của EF

b: Vì ΔCEF vuông tại C

nên ΔCEF nội tiếp đường tròn đường kính EF

=>ΔCEF nội tiếp (I)

Xét (I) có

IC là bán kính

OC\(\perp\)CI tại C

Do đó: OC là tiếp tuyến của (I)

29 tháng 4 2018

HS tự chứng minh

13 tháng 1 2017

(Quá lực!!!)

E N A B C D O H L

Đầu tiên, hãy CM tam giác \(EAH\) và \(ABD\) đồng dạng.

Từ đó suy ra \(\frac{EA}{AB}=\frac{AH}{BD}\) hay \(\frac{EA}{OB}=\frac{AC}{BD}\).

Từ đây CM được tam giác \(EAC\) và \(OBD\) đồng dạng.

Suy ra \(\widehat{ECA}=\widehat{ODB}\). Do đó nếu gọi \(OD\) cắt \(EC\) tại \(L\) thì CM được \(OD⊥EC\).

-----

Đường tròn đường kính \(NC\) cắt \(EC\) tại \(F\) nghĩa là \(NF⊥EC\), hay \(NF\) song song với \(OD\).

Vậy \(NF\) chính là đường trung bình của tam giác \(AOD\), vậy \(NF\) qua trung điểm \(AO\) (là một điểm cố định) (đpcm)

19 tháng 1 2022

N=nước thì đg