K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2021

\(a,\dfrac{2x}{y+x}+\dfrac{2y}{x+y}=\dfrac{2x}{x+y}+\dfrac{2y}{x+y}=\dfrac{2x+2y}{x+y}=\dfrac{2\left(x+y\right)}{x+y}=2\\ b,\dfrac{x}{x+1}+\dfrac{3x+1}{x^2-1}=\dfrac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\dfrac{3x+1}{\left(x-1\right)\left(x+1\right)}=\dfrac{x^2-x}{\left(x+1\right)\left(x-1\right)}+\dfrac{3x+1}{\left(x+1\right)\left(x-1\right)}=\dfrac{x^2-x+3x+1}{\left(x+1\right)\left(x-1\right)}=\dfrac{x^2+2x+1}{\left(x+1\right)\left(x-1\right)}=\dfrac{\left(x+1\right)^2}{\left(x+1\right)\left(x-1\right)}=\dfrac{x+1}{x-1}\)

18 tháng 10 2021

b: \(B=\dfrac{3y+5}{y-1}-\dfrac{-y^2-4y}{y-1}+\dfrac{y^2+y+7}{y-1}\)

\(=\dfrac{3y+5+y^2+4y+y^2+y+7}{y-1}\)

\(=\dfrac{2y^2+8y+12}{y-1}\)

a: \(=\dfrac{2x-2x+y}{2\left(2x-y\right)}=\dfrac{y}{2\left(2x-y\right)}\)

b: \(=\dfrac{3x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{x}{2\left(x-1\right)}\)

\(=\dfrac{6x+2-x^2-x}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{-x^2+5x+2}{2\left(x-1\right)\left(x+1\right)}\)

c: \(=\dfrac{1}{x+2}+\dfrac{x+8}{3x\left(x+2\right)}\)

\(=\dfrac{3x+x+8}{3x\left(x+2\right)}=\dfrac{4x+8}{3x\left(x+2\right)}=\dfrac{4}{3x}\)

d: \(=\dfrac{4x+6-2x^2+3x+2x+1}{\left(2x-3\right)\left(2x+3\right)}\)

\(=\dfrac{-2x^2+9x+7}{\left(2x-3\right)\left(2x+3\right)}\)

15 tháng 11 2017

2)

a) \(\dfrac{1}{x}.\dfrac{6x}{y}\)

\(=\dfrac{6x}{xy}\)

\(=\dfrac{6}{y}\)

b) \(\dfrac{2x^2}{y}.3xy^2\)

\(=\dfrac{2x^2.3xy^2}{y}\)

\(=\dfrac{6x^3y^2}{y}\)

\(=6x^3y\)

c) \(\dfrac{15x}{7y^3}.\dfrac{2y^2}{x^2}\)

\(=\dfrac{15x.2y^2}{7y^3.x^2}\)

\(=\dfrac{30xy^2}{7x^2y^3}\)

\(=\dfrac{30}{7xy}\)

d) \(\dfrac{2x^2}{x-y}.\dfrac{y}{5x^3}\)

\(=\dfrac{2x^2.y}{\left(x-y\right).5x^3}\)

\(=\dfrac{2y}{5x\left(x-y\right)}\)

14 tháng 1 2021

a) ĐKXD: x ≠ 2

\(\dfrac{1}{x-2}+3=\dfrac{3-x}{x-2}\)

\(\Leftrightarrow\dfrac{1}{x-2}-\dfrac{3-x}{x-2}=-3\)

\(\Leftrightarrow\dfrac{1-3+x}{x-2}=-3\)

\(\Leftrightarrow\dfrac{-2+x}{x-2}=-3\)

\(\Leftrightarrow-2+x=-3\left(x-2\right)\)

\(\Leftrightarrow-2+x=-3x+6\)

\(\Leftrightarrow x+3x=6+2\)

\(\Leftrightarrow4x=8\)

\(\Leftrightarrow x=2\) (loại vì không thỏa mãn điều kiện)

Vậy S = ∅

b) ĐKXĐ: x ≠ 7

 \(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)

\(\Leftrightarrow\dfrac{8-x}{x-7}-\dfrac{1}{x-7}=8\)

\(\Leftrightarrow\dfrac{7-x}{x-7}=8\)

\(\Leftrightarrow-1=8\left(vô-lý\right)\)

Vậy S = ∅ 

P/s: Ko chắc ạ! 

14 tháng 1 2021

c) ĐKXĐ: x ≠ 1

\(\dfrac{1}{x-1}+\dfrac{2x}{x^2+x+1}=\dfrac{3x^2}{x^3-1}\)

Quy đồng và khử mẫu ta được:

\(x^2+x+1+2x\left(x-1\right)=3x^2\)

\(\Leftrightarrow x^2+x+1+2x^2-2x-3x^2=0\)

\(\Leftrightarrow-x+1=0\)

\(\Leftrightarrow x=1\) (loại vì ko t/m đk)

Vậy S = ∅

 

7 tháng 1 2022

\(\dfrac{2x^2-x}{x-1}+\dfrac{x+1}{1-x}+\dfrac{2-x^2}{x-1}.\left(x\ne1\right).\)

\(\dfrac{2x^2-x-x-1+2-x^2}{x-1}=\dfrac{x^2-2x+1}{x-1}=\dfrac{\left(x-1\right)^2}{x-1}=x-1.\)

29 tháng 11 2018

a) \(A=\dfrac{2\left(x+y\right)\left(x-y\right)}{x}-\dfrac{-2y^2}{x}\)

\(A=\dfrac{2\left(x^2-y^2\right)+2y^2}{x}\)

\(A=\dfrac{2x^2-2y^2+2y^2}{x}\)

\(A=\dfrac{2x^2}{x}=2x\)

b) \(B=\dfrac{xy}{2x-y}-\dfrac{x^2-1}{y-2x}\)

\(B=\dfrac{xy}{2x-y}-\dfrac{1-x^2}{2x-y}\)

\(B=\dfrac{xy-1+x^2}{2x-y}\)

\(B=\dfrac{x^2+xy-1}{2x-y}\)

c) \(C=\dfrac{4x-1}{3x^2y}-\dfrac{7x-1}{3x^2y}\)

\(C=\dfrac{4x-1-7x+1}{3x^2y}\)

\(C=\dfrac{-3x}{3x^2y}\)

\(C=\dfrac{-1}{xy}\)

a: \(=\dfrac{x+2y}{xy}\cdot\dfrac{2x^2}{\left(x+2y\right)^2}=\dfrac{2x}{y\left(x+2y\right)}\)

b: \(=\dfrac{x\left(4x^2-y^2\right)}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(2x-y\right)^3}\)

\(=\dfrac{x\left(x-y\right)\left(2x+y\right)\left(2x-y\right)}{\left(2x-y\right)^3}\)

\(=\dfrac{x\left(x-y\right)\left(2x+y\right)}{\left(2x-y\right)^2}\)

c: \(=\dfrac{x+3}{x+2}\cdot\dfrac{2x-1}{3\left(x+3\right)}\cdot\dfrac{2\left(x+2\right)}{2\left(2x-1\right)}\)

=1/3

d: \(=\dfrac{x+1}{x+2}:\left(\dfrac{1}{2x}\cdot\dfrac{3x+3}{2x-3}\right)\)

\(=\dfrac{x+1}{x+2}\cdot\dfrac{2x\left(2x-3\right)}{3\left(x+1\right)}=\dfrac{2x\left(2x-3\right)}{3\left(x+2\right)}\)

a) Để y nguyên thì \(6x-4⋮2x+3\)

\(\Leftrightarrow-13⋮2x+3\)

\(\Leftrightarrow2x+3\in\left\{1;-1;13;-13\right\}\)

\(\Leftrightarrow2x\in\left\{-2;-4;10;-16\right\}\)

hay \(x\in\left\{-1;-2;5;-8\right\}\)

17 tháng 2 2021

a) ĐKXĐ: \(x\ne0\)

 \(\dfrac{4x+1}{3x}+\dfrac{2x-3}{6x}\)

\(=\dfrac{2\left(4x+1\right)+2x-3}{6x}\)

\(=\dfrac{10x-1}{6x}\)

 

b) ĐKXĐ: \(x,y\ne0\)

 \(\dfrac{x^2-y^2}{6x^2y^2}:\dfrac{x+y}{3xy}\)

\(=\dfrac{\left(x-y\right).\left(x+y\right)}{6x^2y^2}.\dfrac{3xy}{x+y}\)

\(=\dfrac{x-y}{2xy}\)

a) Ta có: \(\dfrac{4x+1}{3x}+\dfrac{2x-3}{6x}\)

\(=\dfrac{2\left(4x+1\right)}{6x}+\dfrac{2x-3}{6x}\)

\(=\dfrac{8x+2+2x-3}{6x}\)

\(=\dfrac{10x-1}{6x}\)

b) Ta có: \(\dfrac{x^2-y^2}{6x^2y^2}:\dfrac{x+y}{3xy}\)

\(=\dfrac{\left(x-y\right)\left(x+y\right)}{6x^2y^2}\cdot\dfrac{3xy}{x+y}\)

\(=\dfrac{x-y}{2xy}\)