Cho a+b+c=0, x+y+z=0, a/x+b/y+c/z=0. CMR: \(ax^2+by^2+cz^2=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng : A = - A => A = 0
Từ \(a+b+c=0\Rightarrow\hept{\begin{cases}a=-\left(b+c\right)\\b=-\left(c+a\right)\\c=-\left(a+b\right)\end{cases}}\)
\(x+y+z=0\Rightarrow\hept{\begin{cases}x=-\left(y+z\right)\\y=-\left(x+z\right)\\z=-\left(x+y\right)\end{cases}\Rightarrow\hept{\begin{cases}x^2=\left(y+z\right)^2\\y^2=\left(x+z\right)^2\\z^2=\left(x+y\right)^2\end{cases}}}\)
Và \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{ayz+bxz+cxy}{xyz}=0\)\(\Rightarrow ayz+bxz+cxy=0\)
Ta có : \(x^2a+y^2b+x^2c=\)\(\left(y+z\right)^2a+\left(x+z\right)^2b+\left(x+y\right)^2c\)
= \(x^2\left(b+c\right)+y^2\left(c+a\right)+z^2\left(a+b\right)\)\(+2\left(ayz+bxz+cxy\right)\)
= \(-\left(x^2a+y^2b+z^2c\right)\) => \(x^2a+y^2b+x^2c=\) 0
Ta có: \(\hept{\begin{cases}a=-b-c\\x=-y-z\end{cases}}\)
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
\(\Leftrightarrow\frac{\left(-b-c\right)}{\left(-y-z\right)}+\frac{b}{y}+\frac{c}{z}=0\)
\(\Leftrightarrow2byz+2cyz+bz^2+cy^2=0\)
Ta lại có:
\(ax^2+by^2+cz^2=\left(-b-c\right)\left(-y-z\right)^2+by^2+cz^2\)
\(=-2byz-2cyz-bz^2-cy^2=0\)
Cho a+b+c = 0 ; x+y+z = 0 và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
CMR : \(ax^2+by^2+cz^2=0\)
Có:
\(x+y+z=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x=y+z\\-y=x+z\\-z=x+y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=\left(y+z\right)^2\\y^2=\left(x+z\right)^2\\z^2=\left(x+y\right)^2\end{matrix}\right.\)
\(\Rightarrow ax^2+by^2+cz^2\)
\(=a\left(y+z\right)^2+b\left(x+z\right)^2+c\left(x+y\right)^2\)
\(=x^2\left(b+c\right)+y^2\left(a+c\right)+z^2\left(a+b\right)+2\left(ayz+bxz+cxy\right)\)
Mà \(a+b+c=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=-a\\a+c=-b\\a+b=-c\end{matrix}\right.\)
Đồng thời có: \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
\(\Leftrightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\)
\(\Leftrightarrow ayz+bxz+cxy=0\)
Từ đây ta có:)
\(ax^2+by^2+cz^2=-ax^2-by^2-cz^2\)
\(\Rightarrow2\left(ax^2+by^2+cz^2\right)=0\)
\(\Rightarrow ax^2+by^2+cz^2=0\left(đpcm\right)\)
Do x + y + z = 0 nên
x = - (y + z) ; y = - (x + z) ; z = - (x + y)
=> x2 = (y + z)2 ; y2 = (x + z)2 ; z2 = (x + y)2
=> ax2 + by2 + cz2 = a(y2 + 2yz + z2) + b(x2 + 2xz + z2) + c(x2 + 2xy + y2) = x2(b + c) + y2(a + c) + z2(a + b) + 2(ayz + bxz + cxy) (1)
Thay a = - (b + c) ; b = - (a + c) ; c = - (a + b) (Do a + b + c = 0 ) và ayz+bxz+cxy=0 (do a/x+b/y+c/z=0) vào (1) ta được ax2 + by2 + cz2 = - (ax2 + by2 + cz2)
=> ax2 + by2 + cz2 = 0
Ta có \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\Leftrightarrow ayz+bzx+cxy=0\).
Do đó: \(ax^2+by^2+cz^2=\left(ax+by+cz\right)\left(x+y+z\right)-axy-axz-byz-byx-czx-czy=0-xy\left(a+b\right)-yz\left(b+c\right)-zx\left(c+a\right)=0+xyc+yza+zxb=0\).