K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2020

Help me

NV
27 tháng 12 2020

\(\Leftrightarrow\left(m^2+3\right)x-m^2-3-m=\left(3-2m\right)x-5\)

\(\Leftrightarrow\left(m^2+3-3+2m\right)x=m^2+m+3-5\)

\(\Leftrightarrow\left(m^2+2m\right)x=m^2+m-2\)

Pt có tập nghiệm R khi và chỉ khi:

\(\left\{{}\begin{matrix}m^2+2m=0\\m^2+m-2=0\end{matrix}\right.\) \(\Leftrightarrow m=-2\)

\(x^2-2\left(m-1\right)x-2m=0\)

\(\text{Δ}=\left(-2m+2\right)^2-4\cdot1\cdot\left(-2m\right)\)

\(=4m^2-8m+4+8m=4m^2+4>=4>0\forall m\)

=>Phương trình luôn có hai nghiệm phân biệt

 

NV
18 tháng 4 2021

Nếu phương trình là \(\left(2m^2-5m+2\right)\left(x-1\right)^{2021}\left(x^{2020}-2\right)+2x^2-3=0\) thì còn có cơ hội giải quyết

Chứ đề đúng thế này thì e rằng không có cơ hội nào cả.

2 tháng 3 2022

cs nghiệm là?..

NV
2 tháng 3 2022

\(\Leftrightarrow3\left|x-1\right|+6-3m=\left|x-1\right|+m-5\)

\(\Leftrightarrow2\left|x-1\right|=4m-11\)

Do \(2\left|x-1\right|\ge0\) với mọi x nên pt có nghiệm khi:

\(4m-11\ge0\Rightarrow m\ge\dfrac{11}{4}\)

27 tháng 1 2021

a, \(\left(x+m\right)m+x>3x+4\)

\(\Leftrightarrow mx+m^2+x>3x+4\)

\(\Leftrightarrow\left(m-2\right)x+m^2-4>0\left(1\right)\)

Nếu \(m=0,\) bất phương trình vô nghiệm

Nếu \(m>0\)

\(\left(1\right)\Leftrightarrow x>-m-2\)

\(\Rightarrow x\in\left(-m-2;+\infty\right)\)

\(\Rightarrow m>0\) thỏa mãn yêu cầu bài toán

Nếu \(m< 0\)

\(\left(1\right)\Leftrightarrow x< -m-2\)

\(\Rightarrow\) Không thỏa mãn

Vậy \(m>0\)

27 tháng 1 2021

b, \(m\left(x-m\right)\ge x-1\)

\(\Leftrightarrow mx-m^2\ge x-1\)

\(\Leftrightarrow\left(m-1\right)x\ge m^2-1\left(1\right)\)

Nếu \(m=1,\) bất phương trình thỏa mãn

Nếu \(m>1\)

\(\left(1\right)\Leftrightarrow x\ge m+1\)

\(\Rightarrow m>1\) không thỏa mãn yêu cầu

Nếu \(m< 1\)

\(\left(1\right)\Leftrightarrow x\le m+1\)

\(\Rightarrow m< 1\) thỏa mãn yêu cầu bài toán

Vậy \(m< 1\)

23 tháng 12 2020

giúp với mn ơi

NV
23 tháng 12 2020

ĐKXĐ: \(-1\le x\le1\)

Đặt \(\sqrt{1-x^2}=t\Rightarrow0\le t\le1\)

\(\Rightarrow x^2=1-t^2\)

Phương trình trở thành: \(1-t^2+t=m\Leftrightarrow-t^2+t+1=m\)

Xét hàm \(f\left(t\right)=-t^2+t+1\) trên \(\left[0;1\right]\)

\(-\dfrac{b}{2a}=\dfrac{1}{2}\in\left[0;1\right]\)

\(f\left(0\right)=1\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{5}{4}\) ; \(f\left(1\right)=1\)

\(\Rightarrow1\le f\left(t\right)\le\dfrac{5}{4}\)

\(\Rightarrow\) Pt đã cho có nghiệm khi và chỉ khi \(1\le m\le\dfrac{5}{4}\Rightarrow S=\dfrac{9}{4}\)

2 tháng 2 2017

4 tháng 2 2017

 




 

NV
14 tháng 12 2020

1.

Đặt \(\sqrt{x^2-4x+5}=t\ge1\Rightarrow x^2-4x=t^2-5\)

Pt trở thành:

\(4t=t^2-5+2m-1\)

\(\Leftrightarrow t^2-4t+2m-6=0\) (1)

Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb đều lớn hơn 1

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=4-\left(2m-6\right)>0\\\left(t_1-1\right)\left(t_2-1\right)>0\\\dfrac{t_1+t_2}{2}>1\\\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-2m>0\\t_1t_2-\left(t_1+t_1\right)+1>0\\t_1+t_2>2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 5\\2m-6-4+1>0\\4>2\end{matrix}\right.\) \(\Leftrightarrow\dfrac{9}{2}< m< 5\)

NV
14 tháng 12 2020

2.

Để pt đã cho có 2 nghiệm:

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\\Delta'=1+4\left(m-3\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ge\dfrac{11}{4}\end{matrix}\right.\)

Khi đó:

\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)

\(\Leftrightarrow\dfrac{4}{\left(m-3\right)^2}+\dfrac{8}{m-3}=4\)

\(\Leftrightarrow\dfrac{1}{\left(m-3\right)^2}+\dfrac{2}{m-3}-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{m-3}=-1-\sqrt{2}\\\dfrac{1}{m-3}=-1+\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=4-\sqrt{2}< \dfrac{11}{4}\left(loại\right)\\m=4+\sqrt{2}\end{matrix}\right.\)