Giúp mình với:
Cho tam giác ABC vuông tại A, AB>AC. Đường trung trực của BC cắt AB tại D, cắt BC tại E, cắt AC tại F. Cho tam giác BDE đồng dạng với tam giác BCA. CD cắt AE tại O, đường thẳng qua A và song song với BC cắt tia CD tại K.
a) Chứng minh OD/OC=KD/KC
b) Chứng minh: B,K,F thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
Xét tam giác vuông ABC và tam giác vuông AED
góc BAC = góc EAD = 90 độ (1)
Mặc khác: góc AED = góc FEC đối đỉnh
góc FEC = góc ABC (do góc FEC + góc BCA = góc ABC + góc BCA)
=> góc AED = góc ABC (2)
từ (1) và (2) => tam giác vuông ABC và tam giác vuông AED đồng dạng với nhau
2. Xét tam giác BDC có DF là đường trung trực của BC => DF cũng là đường phân giác trong của tam giác BDC ->
góc ADE = góc BDF = góc FDC Mà : góc ADE = góc ACB (do câu 1 hai tam giác đồng dạng)
-> góc ACB = góc FDC
Mặc khác góc ABC + góc ACB = 90
góc FDC + góc DMC = 90
góc MEC + góc ACB = 90
=> Góc ABC = góc DMC = góc MEC
=> tam giác cân ECMtại C
3. Theo câu 2. ta có ECM cân tại C có CF là đường cao => CF là đường Trung tuyến
=> tứ giác BECM có 2 đường chéo cắt nhau và vuông góc tại trung điểm của mỗi đường -> tứ giác BECM là hình thoi
Để hình thoi là hình vuông thì hình thoi phải có 1 góc vuông => góc BEC phải vuông
Mà E nằm trên đoạn thẳng AC và góc BAC vuông
=> E phải trùng với A
=> tam giác ABC vuông cân tại A thì tứ giác BECM là hình vuông (đpcm)
xong rồi đó làm rất mệt nếu thấy đúng thì đăng ký giúp kênh youtube của mình nha có gì mình giúp giải bài cho
https://www.youtube.com/channel/UCdMJRiuo_35tKETQtnAYOBQ
1). Tam giác ABF và tam giác ACE ần lượt cân tại F, E và
F B A ^ = E C A ^ = A ^ 2 ⇒ Δ A B F ∽ Δ A C E .
2). Giả sử G là giao điểm của BE và CF.
Ta có G F G C = B F C E = A B A C = D B D C ⇒ G D ∥ F B , và F B ∥ A D ta có G ∈ A D .
3). Chứng minh B Q G ^ = Q G A ^ = G A E ^ = G A C ^ + C A E ^ = G A B ^ + B A F ^ = G A F ^ , nên AGQF nội tiếp, và Q P G ^ = G C E ^ = G F Q ^ , suy ra tứ giác FQGP nội tiếp.
1) Chứng minh rằng tam giác \( A B F \) đồng dạng với tam giác \( A C E \):
- Tam giác \(ABF\) và \(ACE\) có:
+ Góc \(A\) chung.
+ Góc \(BAF\) bằng góc \(CAE\) (vì \(AD\) là phân giác của góc \(BAC\) và \(CF\), \(BE\) song song với \(AD\)).
Do đó, tam giác \(ABF\) đồng dạng với tam giác \(ACE\) (theo trường hợp góc-góc).
2) Chứng minh rằng các đường thẳng \(BE\), \(CF\), \(AD\) đồng quy:
- Gọi \(G\) là giao điểm của \(BE\) và \(CF\).
- \(AD\) là phân giác góc \(BAC\), và \(BE\), \(CF\) song song với \(AD\). Do đó, \(G\) cũng nằm trên phân giác \(AD\).
- Vậy \(BE\), \(CF\), \(AD\) đồng quy tại \(G\).
3) Chứng minh rằng các điểm \(A\), \(P\), \(G\), \(Q\), \(F\) cùng thuộc một đường tròn:
- Gọi đường tròn ngoại tiếp tam giác \(GEC\) là \(\omega\).
- \(QE\) cắt \(\omega\) tại \(P\) khác \(E\), vậy \(P\) nằm trên đường tròn \(\omega\).
- \(GQ\) song song với \(AE\), và \(AE\) là đường kính của \(\omega\) (vì \(E\) là trung điểm của \(AC\) và \(G\) nằm trên phân giác của \(BAC\)). Do đó, \(GQ\) là dây cung của \(\omega\).
- \(PF\) là tiếp tuyến của \(\omega\) tại \(P\) (vì \(QE\) là tiếp tuyến và \(PF\) là phần kéo dài của \(QE\)).
- Góc \(PGF\) bằng góc \(GAC\) (cùng chắn cung \(GC\) của \(\omega\)).
- \(AF\) là trung trực của \(AB\), nên \(ABF\) là tam giác cân tại \(A\). Do đó, góc \(AFB\) bằng góc \(ABF\).
- Góc \(ABF\) bằng góc \(GAC\) (do đồng dạng của tam giác \(ABF\) và \(ACE\)).
- Vậy, góc \(PGF\) bằng góc \(AFB\). Do đó, \(A\), \(P\), \(G\), \(Q\), \(F\) cùng thuộc một đường tròn.
a) Xét \(\Delta\)DMB và \(\Delta\)DMC có:
DM chung
^DMB = ^DMC ( = 1v )
BM = MC ( M là trung điểm BC )
=> \(\Delta\)DMB = \(\Delta\)DMC ( c. g. c)
b) Từ (a) => ^DCM = ^DBM => ^ACB = ^EBC ( 1)
=> ^EAD = ^ACB = ^EBC = ^AED ( so le trong; AE// BC )
=> \(\Delta\)ADE cân tại D
=> DA = DE mà từ (a) => DB = DC
=> BE = AC ( 2)
Từ (1); (2) và cạnh BC chung
=> \(\Delta\)BEC = \(\Delta\)CAB.( c. g.c)
a: Xét ΔABC vuông tại A và ΔDMC vuông tại D có
góc C chung
=>ΔABC đồng dạng với ΔDMC
=>AB/DM=BC/MC=AC/DC
=>6/DM=10/MC=8/3
=>DM=6:8/3=2,25cm và MC=10:8/3=10*3/8=30/8=3,75cm
b: Xét ΔABC vuông tại A và ΔMBE vuông tại M có
góc B chung
=>ΔABC đồng dạng với ΔMBE
=>BA/BM=BC/BE
=>BA*BE=BM*BC