cho đường tròn đường kính AB. Qua C thuộc nửa đường tròn kẻ tiếp tuyến d với đường tròn . Gọi E lần lượt là chân đường vuông góc kẻ từ A,B đến d và H là chân đường vuông góc kẻ từ C đến AB.CM:
a, CE=CF b,AC là tia phân giác góc BAE c,\(CH^2=BF.AE\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: OC ⊥ d (tính chất tiếp tuyến)
AE ⊥ d (gt)
BF ⊥ d (gt)
Suy ra : OC // AE // BF
Mà OA = OB (= R)
Suy ra: CE = CF (tính chất đường thẳng song song cách đều)
Gọi tâm đường tròn đường kính AB là O
a) Xét (O) có AB là đường kính
nên O là trung điểm của AB
Ta có: OC⊥EF(EF là tiếp tuyến tại C của (O))
BF⊥FE(gt)
AE⊥FE(gt)
Do đó: AE//OC//BF(Định lí 1 từ vuông góc tới song song)
Xét tứ giác AEFB có AE//BF(cmt)
nên AEFB là hình thang có hai đáy là AE và BF(Định nghĩa hình thang)
Hình thang AEFB(AE//FB) có
O là trung điểm của AB(cmt)
OC//AE//BF(cmt)
Do đó: C là trung điểm của EF(Định lí 3 đường trung bình của hình thang)
hay CE=CF(đpcm)
b) Vì OC//AE(cmt)
nên \(\widehat{EAC}=\widehat{OCA}\)(hai góc so le trong)(1)
Xét ΔOAC có OA=OC(=R)
nên ΔOAC cân tại O(Định nghĩa tam giác cân)
⇒\(\widehat{OAC}=\widehat{OCA}\)(Hai góc ở đáy)(2)
Từ (1) và (2) suy ra \(\widehat{EAC}=\widehat{OAC}\)
hay \(\widehat{EAC}=\widehat{BAC}\)
mà tia AC nằm giữa hai tia AE,AB
nên AC là tia phân giác của \(\widehat{EAB}\)(đpcm)
a. Ta có: \(OC\perp d\)(tính chất tiếp tuyến)
\(AE\perp d\) (gt)
\(BF\perp d\) (gt)
Suy ra : OC // AE // BF
Mà OA = OB (= R)
Suy ra: CE = CF ( tính chất đường thẳng song song cách đều )
b. Ta có: AE // OC
\(\Rightarrow\widehat{OCA}=\widehat{EAC}\)( hai góc so le trong ) ( 1 )
Ta có : \(OA=OC\left(=R\right)\)
\(\Rightarrow\Delta OAC\)cân tại O \(\Rightarrow\widehat{OCA}=\widehat{OAC}\)( 2 )
Từ (1)(2) suy ra : \(\widehat{EAC}=\widehat{OAC}\)
Vậy AC là tia phân giác của góc OAE hay AC là tia phân giác của góc BAE
c. Tam giác ABC nội tiếp trong đường tròn (O) có AB là đường kính nên góc (ACB) = 90o
Tam giác ABC vuông tại C có \(CH\perp AB\)
Theo hệ thức liên hệ giữa đường cao và hình chiếu, ta có:
CH2 = HA . HB (3)
Xét hai tam giác ACH và ACE, ta có :
\(\widehat{AEC}=\widehat{AHC}=90^o\)
CH = CE (tính chất đường phân giác)
AC chung
Suy ra : \(\Delta ACH=\Delta ACE\) (cạnh huyền, cạnh góc vuông)
Suy ra: AH = AE (4)
Xét hai tam giác BCH và BCF, ta có :
\(\widehat{AHC}=\widehat{BFC}=90^o\)
CH = CF (= CE)
BC chung
Suy ra: \(\Delta BCH=\Delta BCF\) (cạnh huyền, cạnh góc vuông)
Suy ra: BH = BF (5)
Từ (3), (4) và (5) suy ra: CH2 = AE . BF
Tam giác ABC nội tiếp trong đường tròn (O) có AB là đường kính nên góc (ACB) = 90 °
Tam giác ABC vuông tại C có CH ⊥ AB
Theo hệ thức liên hệ giữa đường cao và hình chiếu, ta có:
C H 2 = HA.HB (3)
Xét hai tam giác ACH và ACE, ta có:
CH = CE (tính chất đường phân giác)
AC chung
Suy ra : ∆ ACH = ∆ ACE (cạnh huyền, cạnh góc vuông)
Suy ra: AH = AE (4)
Xét hai tam giác BCH và BCF, ta có:
CH = CF (= CE)
BC chung
Suy ra: ∆ BCH = ∆ BCF (cạnh huyền, cạnh góc vuông)
Suy ra: BH = BF (5)
Từ (3), (4) và (5) suy ra: C H 2 = AE.BF
Ta có: AE // OC
Vậy AC là tia phân giác của góc OAE hay AC là tia phân giác của góc BAE
a: Xét tứ giác ABNM có
AM//BN
góc AMN=90 độ
Do đó: ABNM là hình thang vuông
b: AM//CO
=>gó MAC=góc OCA=góc OAC
=>AC là phân giác của góc BAM
a: Xét tứ giác ABNM có
AM//BN
góc AMN=90 độ
=>ABNM là hình thang vuông
b: AM//CO
=>góc MAC=góc OCA
=>góc MAC=góc OAC
=>AC là phân giác của góc BAM