cho a=1+3+3^2+3^3+...+3^50 tìm chữ số tận cùng của a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = 30 + 31 + 32 + 33 + .... + 350
=> 3A = 31 + 32 + 33 + 34 + ... + 351
Khi đó 3A - A = (31 + 32 + 33 + 34 + ... + 351) - (30 + 31 + 32 + 33 + .... + 350)
=> 2A = 351 - 30
=> A = \(\frac{3^{51}-1}{2}\)
Khi đó A = \(\frac{3^{51}-1}{2}=\frac{3^3.3^{48}-1}{2}=\frac{27.\left(3^4\right)^{12}-1}{2}=\frac{27.\left(...1\right)^{12}-1}{2}\)
\(=\frac{\left(...7\right)-1}{2}=\frac{\left(...6\right)}{2}=\left(...3\right)\)
Vậy A tận cùng là 3
A=\(1+3+3^2+3^3+...+3^{119}\)
3A=\(3+3^{^2}+3^3+3^4+...+3^{120}\)
3A-A=( \(3+3^{^2}+3^3+3^4+...+3^{120}\))-(\(1+3+3^2+3^3+...+3^{119}\))
2A=\(3^{120}-1\)
A=\(\frac{3^{120}-1}{2}\)
TA CÓ: \(3^{120}\)CÓ CHỮ SỐ TẬN CÙNG LÀ 1 => \(\frac{....1-1}{2}\)= \(\frac{...0}{2}=0\)
VẬY, CHŨ SỐ TẬN CÙNG CỦA A LÀ 0
3A = 3 (1 + 3 + 32 + ... + 32015)
3A = 3 + 32 + 33 + ... + 32016
3A = 1 + 3 + 32 + 33 + ... + 32015 + 32016 - 1
3A = A + 32016 - 1
3A - A = 32016 - 1
2A = 32016 - 1
A = (32016 - 1) / 2
Theo công thức tính chữ số tận cùng của lũy thừa (bn tìm trên mạng), ta được chữ số tận cùng của 32016 là 1
=> Chữ số tận cùng của 32016 - 1 là 0
=> Chữ số tận cùng của (32016 - 1) / 2 là 0
Vậy chữ số tận cùng của A là 0
3P = 3.(1 + 3 + 3^2 +........+ 3^50)
= 3 + 3^2 + 3^3 +.........+ 3^51
Vậy ta sẽ lấy 3P - P = (3 + 3^2 + 3^3 +........+ 3^51) - (1 + 3 + 3^2 +........+ 3^50)
= 3^51 - 1 (kết quả tự tính nhé chỉ cần lấy 3^51 - 1)
k cho cái nhé
a) S = 1 + 3 + 32 +...+ 348 + 349
=> 3S = 3 + 32 + 33 +...+ 348 + 349 + 350
=> 3S - S = 350 - 1
=> S = \(\frac{3^{50}-1}{2}\)
Vậy S = \(\frac{3^{50}-1}{2}\)
b) Câu này hơi khó!
\(S=1+3+3^2+3^3+...+3^{48}+3^{49}.\)
\(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{48}+3^{49}\right)\)
\(S=1\left(1+3\right)+3^2\left(1+3\right)+..+3^{48}\left(1+3\right)\)
\(S=4\left(1+3^2+....+3^{48}\right)\)
\(\Rightarrow S⋮4\)
b, Có : \(S=1+3+3^2+3^3+...+3^{48}+3^{49}\)
\(\Rightarrow3S=3+3^2+3^3+...+3^{48}+3^{49}+3^{50}\)
=> 3S - S = ( 1 + 3 + 32 + 33 + ..... + 348 + 349 ) - ( 3 + 33 + 33 + .. + 349 + 350)
\(\Rightarrow2S=3^{50}-1\)
\(\Rightarrow S=\frac{3^{50}-1}{2}\)
\(\Rightarrow3^{50}-1=\left(...9\right)-1=\left(...8\right)\)( tận cùng là 8 )
\(\Rightarrow S=\frac{3^{50}-1}{2}=\frac{....8}{2}=\left(...4\right)\)
=> S có tận cùng là 4
a) \(S=1+3+3^2+3^3+...+3^{48}+3^{49}\)
\(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{48}+3^{49}\right)\)
\(S=4+\left(3^2.1+3^2.3\right)+...+\left(3^{48}.1+3^{48}.3\right)\)
\(S=4+3^2.\left(1+3\right)+...+3^{48}.\left(1+3\right)\)
\(S=1.4+3^2.4+...+3^{48}.4\)
\(S=\left(1+3^2+....+3^{48}\right).4⋮4\)
ta có
\(3^{50}+3^{48}=3^{48}\left(3^2+1\right)=3^{48}.10\)
tương tự ta sẽ có
\(a=\left(3^{50}+3^{48}\right)+\left(3^{49}+3^{47}\right)+\left(3^{46}+3^{44}\right)+...+\left(3^2+3^0\right)+3\)
hay \(a=10.\left(3^{48}+3^{47}+3^{44}+3^{43}+..+3^3+1\right)+3\)
do đó chứ số tận cùng của a là 3