Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2-9=\left(x-3\right)\left(x+3\right)\)
b) \(x^2+1-\dfrac{41}{25}=x^2-\dfrac{16}{25}=\left(x-\dfrac{4}{5}\right)\left(x+\dfrac{4}{5}\right)\)
Bài 4:
a: \(=7xy\left(2-3-4\right)=-35xy\)
b: \(=\left(x-5\right)\left(x+y\right)\)
c: \(=10x\left(x-y\right)+8\left(x-y\right)=2\left(x-y\right)\left(5x+4\right)\)
d: \(=\left(x+y\right)^3-\left(x+y\right)\)
=(x+y)(x+y+1)(x+y-1)
e: =x^2+8x-x-8
=(x+8)(x-1)
f: \(=2x^2-4x+x-2=\left(x-2\right)\left(2x+1\right)\)
g: =-5x^2+15x+x-3
=(x-3)(-5x+1)
h: =x^2-3xy+xy-3y^2
=x(x-3y)+y(x-3y)
=(x-3y)*(x+y)
Bài 4:
a: \(=7xy\left(2-3-4\right)=-35xy\)
b: \(=\left(x-5\right)\left(x+y\right)\)
c: \(=10x\left(x-y\right)+8\left(x-y\right)=2\left(x-y\right)\left(5x+4\right)\)
d: \(=\left(x+y\right)^3-\left(x+y\right)\)
=(x+y)(x+y+1)(x+y-1)
e: =x^2+8x-x-8
=(x+8)(x-1)
f: \(=2x^2-4x+x-2=\left(x-2\right)\left(2x+1\right)\)
g: =-5x^2+15x+x-3
=(x-3)(-5x+1)
h: =x^2-3xy+xy-3y^2
=x(x-3y)+y(x-3y)
=(x-3y)*(x+y)
Giải:
Ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
\(\Rightarrow\frac{x^2}{3^2}=\frac{y^2}{4^2}=\frac{z^2}{5^2}\)
\(\Rightarrow\frac{-2x^2}{-2.9}=\frac{y^2}{16}=\frac{3z^2}{3.25}\)
\(\Rightarrow\frac{-2x^2}{-18}=\frac{y^2}{16}=\frac{3z^2}{75}\)
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{-2x^2}{-18}=\frac{y^2}{16}=\frac{3z^2}{75}=\frac{-2x^2+y^2-3z^2}{-18+16-75}=\frac{-77}{-77}=1\)
+ \(\frac{-2x^2}{-18}=1\Rightarrow x=3\)
+ \(\frac{y^2}{16}=1\Rightarrow y=4\)
+ \(\frac{3z^2}{75}=1\Rightarrow z=5\)
Vậy x=4; y=4; z=5
Bài 1:
a: Ta có: |3x-2|+|2y+1|=0
=>3x-2=0 và 2y+1=0
=>x=2/3 và y=-1/2
Bài 2:
a: ta có: \(\left(2x-5\right)^{x-3}=\left(2x-5\right)^2\)
\(\Leftrightarrow\left(2x-5\right)^{x-3}-\left(2x-5\right)^2=0\)
\(\Leftrightarrow\left(2x-5\right)^2\left[\left(2x-5\right)^{x-5}-1\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\x-5=0\end{matrix}\right.\Leftrightarrow x\in\left\{\dfrac{5}{2};5\right\}\)
b: Ta có; \(x^{2x-1}=x^3\)
\(\Leftrightarrow x^3\left(x^{2x-4}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-4=0\end{matrix}\right.\Leftrightarrow x\in\left\{0;2\right\}\)