Bài 2: Cho ABC MNO , bieát A ˆ 550, N ˆ 750.Tìm soá ño caùc goùc cuaû moãi tam giaùc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: cho tam giác ABC vuông tại A, phân giác BE. Kẻ EH vuông góc BC. ( H thuộc BC). Gọi K là giao điểm của BA và HE. Chứng minh rằng:
1. Tam giác ABE = Tam giác HBE
2. BE là đường trung trực của AH.
Bài 2: Cho tam giác ABC cân tại A, có AH là đường cao. Từ H vẽ tia Hx // AB. Từ C vẽ đường vuông góc với BC cắt Hx tại D. Chứng minh:
1. Tam giác AHB = Tam giác DCH
2. Tam giác ADC vuông
XétΔABD và ΔACE có
AB=AC(gt)
góc A chung
AD=AE(gt)
=> ΔABD= ΔACE(cgc)
=> góc ABD = góc ACE ( 2 góc tương ứng )
b, Ta có ΔABC cân tại A
=> góc ABC = góc ACB ( 2 góc ở đáy )
Ta lại có góc ABD+góc DBC = góc ABC góc ACE+góc ECB = góc ACB
=> góc DBC = góc ECB ( vì góc ABD = góc ACE theo câu a) hay góc IBC = góc ICB ( vì BD cắt CE tại I )
Xét ΔIBCcó
góc IBC = góc ICB ( cmt )
=>ΔIBC cân tại I
Để tính độ dài cạnh BC của tam giác ABC, chúng ta có thể sử dụng định lý Pythagoras và các tính chất của tam giác cân.
Vì tam giác ABC cân tại A, ta có AH = HC. Vì vậy, ta có HA = HC = 32 cm.
Ta biết HD = 4 cm. Vì tam giác ABC cân, ta có AD là đường cao từ A xuống BC. Vì vậy, ta cũng có HD = AD.
Áp dụng định lý Pythagoras vào tam giác AHD, ta có:
AH^2 = AD^2 + HD^2 32^2 = AD^2 + 4^2 1024 = AD^2 + 16 AD^2 = 1024 - 16 AD^2 = 1008 AD = √1008
Vậy, độ dài cạnh BC của tam giác ABC là 2 * AD = 2 * √1008 = 2 * 4√63 = 8√63 cm.